

Stabilization of Energetic-Ion-Driven MHD Modes in the Advanced Helical Device, Heliotron J"

K. Nagasaki¹, S. Yamamoto¹, S. Kobayashi¹, Y. Nagae², K. Sakamoto¹, Y. I. Nakamura², T. Mizuuchi¹, H. Okada, ¹, T. Minami¹, K. Masuda¹, S. Ohshima¹, S. Konoshima¹, N. Shi¹, Y. Nakamura², H. Y. Lee², L. Zang², S. Arai², H. Watada², M. Sha², H. Sugimoto², H. Fukushima², K. Hashimoto², N. Kenmochi², G. Motojima³, Y. Yoshimura³, K. Mukai³, G. Weir⁴, N. Marushchenko⁵, F. Volpe⁶, T. Estrada⁷, F. Sano¹

Institute of Advanced Energy, Kyoto University
Graduate School of Energy Science, Kyoto University²
National Institute for Fusion Science
University of Wisconsin-Madison, USA
Max-Planck Institute für Plasma Physik, Germany
Columbia University, USA
CIEMAT, Spain

Kyoto: Japan's "Heartland"

Kyoto University

As of May, 2013

Founded in 1897 Nobel Prize winners : 9 (Oct 2013)

Faculties : 10 Graduate schools : 16 Research institutes : 14 Research and educational centers : 18

Undergraduate student s: 13,585 (187) Graduate students : 9,323 (1,212) Foreign students : 1,399 Academic staffs : 2,787 Non-Academic staffs : 2,655

Scholastic exchange agreements : 94 Institutions of 34 countries

Heliotron J Laboratory

Institute for Chemical Research

Research Institute for Sustainable Humanosphere

Disaster Prevention Research Institute

Institute of Advanced Energy, Kyoto Univ.

Institute of Advanced Energy, Kyoto University

- 1. The Heliotron J Device and 70 GHz ECH/ECCD System
- 2. Energetic-particle-driven MHD modes
- 3. Modification of rotational transform profile by ECCD
- 3. Stabilization experiments of energetic-ion-driven MHD modes by ECCD
 - Stabilization of energetic particle modes by ECCD
 - Effect of magnetic shear
- 4. Conclusions

Outline

Heliotron J Project Aims To Develop Attractive Compact Fusion Reactor

TER

A steady-state, compact, high- β helical reactor

- No disruptions (currentless operation)
- No close conducting wall or active feedback control of instabilities
- (no serious MHD instabilities)
- High Q_{eng} (= net P_{ele.} / P_{oper.}) (at minimum recirculating powers)

Wall loading

(3~4 MW/m² under the development of advanced wall materials)

Planned/Operating Helical Systems

Plasma Device (Laboratory)	H-1 (ANU)	TJ-II (CIEMAT)	LHD (NIFS)	HSX (U. Wisconsin)	Heliotron J (Kyoto Univ.)	W7-X (MPI)
Schedule	1993~	1997~	1998~	1999~	1999~	2014~
Coil System	M=3 HFC+CR+TFC	M=4 HFC+CR+TFC	M=10 HFC+PFC	M=4 Modular Coil	M=4 HFC+TFC+PF C	M=5 SC Modular Coil
Major Radius Minor Radius Plasma Volume Magnetic Field Pulse Length	1.0 m 0.22 m 0.96 m ³ 1.0 T 1 sec	1.5 m 0.1-0.25 m 1.43 m ³ 1.5 T 0.5 sec	3.9 m 0.6-0.65 m 30 m ³ 3 T CW	1.2 m 0.15 m 0.44 m ³ 1.37 T 0.2 sec	1.2 m 0.18 m 0.82 m ³ 1.5 T 0.5 sec	6.5 m 0.65 m 54 m ³ 3.0 T > 10 sec
Heating System	ECH (0.2MW) Helicon (~ 0.5MW)	ECH (0.6MW) NBI (4MW)	ECH (3MW) ICH (3MW) NBI (32MW)	ECH (0.2MW)	ECH (0.5MW) NBI (1.5MW) ICH (2.5MW)	ECH, ICH NBI (20-30MW)
Features	Flexible configuration, High beta	High rotational transform, Low shear	Moderate shear	Quasi-helical symmetry	Local quasi- isodynamicity	Quasi- isodynamicity
Schematic View						

Institute of Advanced Energy, Kyoto University

Heliotron J Device

Major Radius: R=1.2 m Plasma Minor Radius : a=0.1-0.2 m Magnetic Field: $B \le 1.5$ T Vacuum iota: 0.3-0.8 with low magnetic shear Heating System: ECH 0.4MW NBI 0.8MW ICRF 0.4MW

Magnetic coil system :

one l/m=1/4 continuous helical coil two sets of toroidal coils three pairs of vertical field coils

Typical plasma parameters; $n_e=0.2-4 \times 10^{19} \text{ m}^{-3}$ $T_e=0.3-1 \text{ keV}$ $T_i=150-200 \text{ eV}$

Magnetic flux surfaces

Shear Alfvén Waves

- Shear Alfvén Waves are transverse electromagnetic waves that propagate along the magnetic field
 - Dispersionless: ω=k_{||}v_A
 - Alfven Speed: $v_A = B/(\mu_0 n_i m_i)^{1/2}$
 - E_{\parallel} is tiny for $\omega < < \Omega_{i}$
 - Particles move with field line
 - All frequencies below Ω_i propagate
- The damping rate of shear Alfvén waves is very large at the Alfvén resonance due to Coulomb collision and Landau damping

"Contiuum damping"

- If $\omega^2 < k_{\parallel}^2 v_A^2$, the Alfvén resonance disappears, and the Shear Alfvén waves can propagate
- Since -k² is not so large, the eigenmodes is excited all over the plasma radius
- "Global Alfvén Eigenmode (GAE)"

"Discrete Alfvén Eigenmode (DAE)"

Shear Alfvén Continua in 2-D Magnetic Configuration

 In low magnetic shear configuration, GAE can lie below and/or above the continuum instead of TAE (low-n).

r/a

0.4

0.6

0.8

0

0.2

Shear Alfvén Continua in 3-D Magnetic Configuration

Institute of Advanced Energy, Kyoto University

Energetic-Particle-Driven MHD Instabilities

- Energetic alpha particles are produced through deuterium-tritium fusion process and beam ions used for plasma heating
- They have a velocity comparable with the Alfvén velocity, can interact resonantly with shear Alfvén waves during slowing-down process
- Alfvén eigenmodes (AEs) are excited, resulting in enhanced radial transport of the energetic ions
- Even a small fraction of alpha power loss in a burning plasma can seriously damage plasma facing components

Energetic ion losses induced by TAE bursts in LHD.

Ogawa, Nucl. Fusio (2010)

Observation of AEs in NBI-heated plasmas on Heliotron J

Typical waveform of AEs

- In NBI heated plasmas, some coherent MHD instabilities are observed in the range of Alfvén frequency
- The frequencies are similar to those of the GAEs with m=2/n=1 (without impurity effect)

- The spatial structure of eigenmode with $f_{cal} = 101$ kHz agrees with that of the observed mode with $f_{exp} = 95$ kHz
- Comparison of experimental result with shear Alfvén spectra indicates that the observed modes are GAEs
- Effect of toroidal mode coupling on low-*n* GAE with $N_f = 4$ is weak

- Energetic particle modes (EPM) are excited when pressure of energetic particles (EP) is comparable to bulk pressure
- Energetic particles create a new wave branch
- Energetic particles resonate with mode, altering $Im(\omega)$
- Intense drive overcomes continuum damping

Observation of EPM

- The ratio of beam velocity to Alfven velocity is about 0.3.
- Observed mode frequency is not proportional to $n_e^{-0.5}$
- Mode amplitude depends on electron density

A Severe Impact of ECH on the AE Behavior Was Observed in DIII-D and TJ-II

- In DIII-D, ECH near q_{min} suppresses RSAE and lower amplitude TAEs are unstable in DIII-D
- In TJ-II, ECH+NBI causes steady frequency Aes to decrease in amplitude and begin chirping

Institute of Advanced Energy, Kyoto University

Steering mirror

- A launching system with a focusing mirror and a steering mirror has been installed and operated in Heliotron J since the 2009 experimental campaign
 - Maximum injection power: P_{EC}=0.4MW
 - Focused Gaussian beam, w=30 mm
 - |N_{||}| < +0.6
 - Possible to inject along magnetic axis

Institute of Advanced Energy, Kyoto University

- The CD efficiency is calculated by applying the adjoint approach with parallel momentum conservation
- Good agreement was found between experimental results and TRAVIS code results in ECH-only plasmas

ECCD in ECH-only plasmas

Institute of Advanced Energy, Kyoto University

ECCD Depends on Magnetic Field Structure

- The bumpiness control changes the magnetic ripple structure
- The toroidal current changes its flowing direction, depending on the ripple structure
- The current direction is explained by the balance between the Fisch-Boozer effect and the Ohkawa effect

K. Nagasaki, Nucl. Fusion (2010)

EC Current Modifies Rotational Transform Profile, Forming a Strong Magnetic Shear in Core Region

• The TRAVIS code predicts that the total current flows 2.9 kA at $N_{\parallel} = 0.4$, $n_e=0.5 \times 10^{19} \text{ m}^{-3}$ and $T_e(0)=0.8 \text{ keV}$

Institute of Advanced Energy, Kyoto University

An Energetic-Ion-Driven MHD Mode Has Been Stabilized by Counter-ECCD

Institute of Advanced Energy, Kyoto University

K .Nagasaki, Nucl Fusion 2013

The Observed Mode Appears to be Energetic Particle Mode

- Density fluctuation measurement using a Beam Emission Spectroscopy (BES) reveals that the mode of 80 kHz is localized at r/a ~ 0.6
- FFT analysis of Mirnov coil signals shows that the mode number is m/n = 4/2, rotating in the ion diamagnetic direction
- This mode has high coherence with magnetic probe signals, weak n_e dependence

- Outward movement of EPM with n=1 during the ramp-up phase of plasma current is observed in BES measurements (n_e/<n_e>).
- The movement can be explained by the change of shear Alfvén continuum due to the increasing of plasma current.

• The mode suppression has no transition property

U Heliotron

Co-ECCD is Also Effective for Stabilizing Energetic-Ion-Driven MHD Modes

Institute of Advanced Energy, Kyoto University

EPM Is Stabilized When Magnetic Shear Exceeds a Threshold Value

- For counter-ECCD, when the magnetic shear is larger than 0.12, the mode amplitude is completely suppressed to the level of ECH-only phase
- Similar suppression is observed for co-ECCD, but the threshold shear is not clear

 EPM is mitigated by the change in magnetic shear due to ECCD where continuum damping is the main mechanism for stabilization

- Energetic-ion-driven MHD modes such as GAE and EPM are often observed in Heliotron J NBI plasmas
- An EC current of a few kA driven in the central region modifies the rotational transform profile from a shearless flat one into a high-shear one in the medium-sized stellarator/Heliotron device, Heliotron J
- The energetic-ion-driven MHD modes have been stabilized by centrally localized second harmonic 70-GHz X-mode ECCD
- Both co-ECCD (negative magnetic shear) and counter-ECCD (positive magnetic shear) are effective at stabilizing energetic-ion-driven MHD modes
- $N_{||}$ scan indicates that an EPM is stabilized when the positive (possibly negative also) magnetic shear exceeds a critical threshold
- Comparison with AE theory is required to clarify the stabilization mechanism

Collaboration with F. Volpe (Columbia Univ.)

- T_e profile measurement using EBE is under development under collaboration with Columbia Univ. and NIFS
- The cut-off density for O-mode is medium, $n_e \sim 2x10^{19}m^{-3}$.
- Ray tracing calculation shows that an O-X mode conversion window is accessible
- A radiometer for 24-42GHz has been assembled and tested

Gaussian Optics Antenna

W. G. Switch

Induced Electric Field Affects Time Evolution of EC Driven Current

The iota profile reaches quasi-steady state after 50 msec under the experimental condition, n_e=0.5×10¹⁹ m⁻³ and T_e(0)=0.8 keV

current driven by RF source,

$$j_{\parallel} = -e \int du v_{\parallel} \delta f_e$$
 with $\delta f_e = f_e - F_{eM}$ and $u = \gamma v$

can be calculated by solving DKE,

$$\frac{d\delta f_e}{dt} - C^{lin}(\delta f_e) = \frac{Q_{RF}(F_{eM})}{\partial \mathbf{u}} = -\frac{\partial}{\partial \mathbf{u}} \cdot \mathbf{\Gamma}_{RF}$$

- idea: exploiting the self-adjoint properties of C^{lin}(δf_e) to express CD through the response function formally identical to the solution of (generalized) Spitzer-Härm problem (Hirshman, 1980; Antonsen & Chu, 1982; Taguchi, 1983)
 - If solution of the adjoint kinetic eq-n is known,

$$\frac{dg}{dt} + C^{lin}(g) = v_{e0} \frac{v_{\parallel}}{v_{th}} b F_{eM} \quad \text{with} \quad b = B / B_{max},$$

then with $g(s; u, \xi) = \chi(s; u, \xi)F_{eM}(u)$ and $\xi = v_{\parallel}/v$

$$\langle j_{\parallel} \rangle = \frac{e v_{th}}{v_{e0}} \cdot \frac{\langle b \rangle}{\langle b^2 \rangle} \cdot \langle \int d\mathbf{u} \, \frac{\partial \chi}{\partial \mathbf{u}} \cdot \mathbf{\Gamma}_{RF} \rangle$$

Presently, adjoint approach is most common for ray- and beam-tracing