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HBT-EP’s mission: Measure and control 3D edge magnetic
fields with high detail and accuracy HBPEP

« Tokamaks are nominally axisymmetric, but small 3D fields arise
In practice
— Finite magnetic coils
— Coll misalignments

« Understanding 3D field effects is important for predicting and
optimizing tokamak performance

— Edge Localized Mode (ELM) mitigation
— Error field correction
— Resistive Wall Mode (RWM) feedback
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Small wall asymmetries exist in realistic machines HBBEP

« Toroidal and poloidal wall asymmetries exist due to ports, insulating
breaks, and varying plasma geometries 1T-60U
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« Modular walls may distort kink mode structure, and lead to non-rigid
(“multimode™) behavior

— Discrete conducting structures will couple multiple stable or unstable
modes through eddy currents. This can lead to loss of feedback control

or complicate the plasma response.
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« HBT-EP capabilities
— Magnetic sensors for measuring mode activity
— Adjustable wall structure
— Mode analysis without a pre-defined basis
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HBT-EP system parameters

Major Radius R: Toroidal Field By:
Minor Radius: Pulse Length:
Plasma Current | Electron temperature:




Adjustable walls and magnetic diagnostics in HBT-EP allow
high-resolution detection of plasma modes HBPBEP

« 236 in-vessel magnetic sensors, 120 active feedback coils

A Ve

High-resolution poloidal and radial
magnetic field sensors

20 adjustable
40 poloidal + 40 radial field sensors wall segments

for active feedback




Magnetic pickup coils are used to analyze 3D mode behavior HBBEP
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Magnetic pickup coils are used to analyze 3D mode behavior
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Magnetic pickup coils are used to analyze 3D mode behavior

HBPEP
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HBT-EP plasmas have a variety of coherent 3D mode activity HBBEP
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Singular Value Decomposition gives temporal and spatial

modes derived from measurements H*P
E\ 70246: Poloidal Array 2, Poloidal Field Fluctuations
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Singular Value Decomposition gives temporal and spatial

modes derived from measurements H*P
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Singular Value Decomposition gives temporal and spatial
modes derived from measurements

HBPEP

70246: Poloidal Array 2, Poloidal Field Fluctuations
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Singular Value Decomposition gives temporal and spatial
modes derived from measurements HBBEP
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Singular Value

Example shot with edge “safety factor” ~ 2.7

has clear m/n=3/1 and 6/2 modes
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The m/n=6/2 kink can evolve independently of the 3/1 mode,
iImplying the need for multimode feedback control

HBPEP
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Conducting wall asymmetries may change coupling between
multiple kink modes H@P

« Different eddy-current patterns may couple stable/unstable modes

* A "non-rigid” kink structure means that the shape of instabilities
could change as plasma pressure increases

Poloidal Asymmetry Toroidal Asymmetry

Top shells
g TCIIIIIIIT Il retracted
4cm

5 sections
retracted 4cm




Conducting wall asymmetries may change coupling between
multiple kink modes HBPEP

« Different eddy-current patterns may couple stable/unstable modes

* A "non-rigid” kink structure means that the shape of instabilities
could change as plasma pressure increases

 VALEN code can simulate behavior with different wall configurations
to maximize coupling of specific modes through eddy-currents

m=0dd, n=1 shell configuration

25
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« Results of changing the HBT-EP wall geometry
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Multimode spectrum is enhanced by
changing the wall geometry

HBPEP
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With several wall sections retracted,
power in the second mode pair
(modes 3 and 4) is more significant
than when shells are fully inserted

Results strongly depend on

equilibrium

— Need more shots for statistics
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Spatial mode structure is similar for
the different wall geometries
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Dominant m-number transitions have been seen for shells
fully inserted and asymmetrically retracted HBBEP

« Toroidal asymmetry, 3 sections retracted:
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Transition from m=4 to m=3 mode occurs later
for the toroidally asymmetric case HBBEP
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« Shell geometry appears to affect mode transitions

« More shots are needed to study statistical significance
— Plasma equilibria were slightly different
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Summary HBBEP

Small 3D magnetic fields significantly affect tokamak performance

HBT-EP is able to measure 3D edge magnetic fields in high detall
— Multimode interactions have been observed

Conducting wall structures around plasmas can influence the
presence of various 3D field components

— More run-time with wall asymmetries in HBT-EP will provide insight into
the importance of wall geometry
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