
Outline
•  Background

–  Expanding Universe: Einstein’s Eqn with FRW metric
–  Inflationary Cosmology: model with scalar field
–  QFTàBubble nucleationàBubble collisions

•  Bubble Collisions in Single Field Theory
–  Results: Classical Tunneling via “Free Passage”

•  Concerns: 
–  dissipiation via interactions with other fields

•  Include interaction with additional scalar field 
•  Account for gravity

–  Revisit validity of FP itself for single field case

•  Methods
–  Purely classical

•  Analytic
•  Numerical

–  Semiclassical

Cosmic Bubble Collisions



Expanding Universe
•  Special relativity

–  correct definition of distance in flat spacetime is
–  index notation:     (repeated indices summed over)
–  here the metric,       , is the 4x4 matrix:   

•  Universe is homogeneous, isotropic, and expanding on 
large scales à use FRW metric:

Increasing a(t) means expansion. How does it evolve? 

•  GR: Einstein’s equation relates curvature of spacetime to 
mass/energy content of spacetime

•  For FRW:
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•  Note:      equivalent to a constant energy density (does 
not dilute as universe expands)

•  Universe with only     has a α eHt , other types?
–  ordinary (non-rel) matter: ρ α a-3   à  a α t2/3
–  radiation: ρ α a-4   à  a α t1/2
–  Only since recently has (today’s) observed      been dominant form of 

energy density (~70%) in universe.      is nearly zero, but dominates 
since matter and radiation have become so diluted.
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38 THE SMOOTH, EXPANDING UNIVERSE 

a-^^ = -3>. (2.56) 
at a 

The conservation law can be applied immediately to glean information about 
the scaling of both matter and radiation with the expansion. Matter has effectively 
zero pressure, so 

% ^ = 0 (2.57) 

implying that the energy density of matter pm oc a~^. We anticipated this result in 
Chapter 1 based on the simple notion that the mass remains constant, while the 
number density scales as the inverse volume. The application to radiation also offers 
no surprises. Radiation has V = p/3 (Exercise 14), so working from Eq. (2.55), 

dpr a _ - 4 ^ [Prtt̂ ^ 
-h -4 /9 r = a 

dt a dt 

= 0. (2.58) 

Therefore, the energy density of radiation pr oc a"" ,̂ accounting for the decrease in 
energy per particle as the universe expands. 

Through most of the early universe, reactions proceeded rapidly enough to keep 
particles in equilibrium, different species sharing a common temperature. We will 
often want to express the energy density and pressure in terms of this temperature. 
For this reason, and many others which will emerge over the next few chapters, 
it is convenient to introduce the occupation number, or distribution function^ of a 
species. This counts the number of particles in a given region in phase space around 
position X and momentum p^ The energy of a species is then obtained by summing 
the energy over all of phase space elements: ^ f{x,p)E{p) with E{p) = \fp^ 4- m^. 
How many phase space elements are there in a region of "volume" d^xd^p? By 
Heisenberg's principle, no particle can be localized into a region of phase space 
smaller than {27rh)^, so this is the size of a fundamental element. Therefore, the 
number of phase space elements in d^xd^p is d^xd^p/{27rh)^ (see Figure 2.4), and 
the energy density is 

Pi = gi I-0^ Mx,p)Eip) (2.59) 

where i labels different species, gi is the degeneracy of the species (e.g., equal to 2 
for the photon for its spin states), and I have gone back to h = 1. In equilibrium 
at temperature T, bosons such as photons have Bose-Einstein distributions, 

and fermions such as electrons have Fermi-Dirac distributions. 

"̂ By p here I mean not the comoving momentum defined in Eq. (2.24), but rather the proper 
momentum which decreases with the expansion. See Exercise 15 for a discussion. 



Horizon Problem/Inflation
•  If we assume only radiation domination followed by matter domination we 

find that CMB photons originated from region not causally connected
•  CMB photons arriving from every direction fit same BB curve, so have same 

temp to one part in 105 
Solution: INFLATION
Short period of very rapid exponential expansion, i.e. large, positive    before 
radiation domination. As inflation ends     à    today=small
•  occurred at ~10-32-10-33 s after big bang, lasted ~10-36 s 
•  a(t) increased by ~1027, (vol increased by factor of 1078)

How should we model inflation?
•  A scalar field, Φ(x), has energy density:
•  Model inflation with homogeneous scalar field so      is zero. We call this field the 

inflaton field. If dΦ/dt can be ignored rel to V(Φ), then inflaton field’s ρ enters 
Friedmann eqn as V(Φ). 

BRIEF ARTICLE

THE AUTHOR

(1) Rµν −
1

2
gµνR+ gµνΛ = 8πGTµν

(2)

�
ȧ
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n Vinfl 

Φ Φ* 

Slow-roll inflation: 
1. dΦ/dt starts off small, V has small negative slope here, phi rolls down flat 
part of potential slowly (dΦ/dt stays small) until here so ρ≈V(Φ)≈Vinfl. 
2. As Φ rolls down steeper part of potential dΦ/dt becomes significant, V
(Φ) is decreasing from Vinfl (inflation is ending). Interactions between Φ and 
other fields yield particle production in other fields as rolls into potential well 
and settles into Φ* (there is damping due to this particle production and 
hubble damping term in Φ field equation 
3. V(Φ*)~0 corresponds to the small Λ we observe today 
 
  

V(Φ) 



Quantum Effects
•  The inflaton field is a quantum field 
•  Tunneling:

–  Regular Quantum Mechanics:



•  For IC corresponding to particle coming in from left with energy E, not all of the 
wavefunction will be reflected off the barrier. Nonzero transmission coeff (nonzero 
probability of finding particle to right of barrier).

–  Similarly a quantum field can develop regions that fluctuate into 
configurations outside of the basin of attraction field begins in

Consider a potential V(Φ) that looks like:

V(x) 

x

E

V(Φ) 

Φ ΦB ΦA 



Bubble Nucleation
•  Scalar field Lagrangian:
•  In Minkowski space variation of action yields this eqn of motion:



•  Homogeneous classical field initially in ΦA (with dΦ/dt=0) stays in ΦA 

–  For FRW metric with da/dt ≠ 0 the field eqn has a damping term nonzero, so ΦA is stable attractor

•  Quantum field initially homogeneous and equal to ΦA develops small regions, 
or bubbles, in which field configuration fluctuates away from ΦA

•  Some fluctuations will be in basin of attraction of ΦB, such as ΦB*

•  ΦB* is far enough inside basin of ΦB, the field inside bubble quickly evolves 
into ΦB and this bubble “expands” (in sense that bubble walls move out, 
encompassing more and more space originally in ΦA, now in ΦB. This is 
because V(ΦB)<V(ΦA), so outward pressure gradient

•  Note: fluctuations into field configurations Φ’ with V(Φ’)>V(ΦA) collapse so we don’t care about them 

V(Φ) 

ΦB ΦA ΦB* 
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Bubble collisions 
•  Note: region separating inside of bubble (in ΦB) and surrounding 

“sea” (in ΦA) is finite. Bubble walls accelerate as move out, thin 
walls move near speed of light.
–  Field configuration in a thin wall can be solved for using “relaxation”. 

schematically (in 1 spatial dim) looks like:




•   Presumably these bubbles are nucleated all over.. So bubble 
collisions inevitably occur. What then?
–  Numerical results for single scalar field theory found classical tunneling 

could occur. Consider a potential with 3 local minima:

      initial conditions corresponding to two 
      expanding phiB bubbles in surrounding phiA 
      are evolved numerically according to field eqn:



 

V(Φ) 

ΦB ΦA ΦC 

ΦA 

ΦB 
x

Φ(x) 
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Bubble collisions 


Explanation: Free passage approximation
Solution to nonhomogeneous wave equation 
is well approximated by solution to 
homogeneous wave eqn (mere superposition 
of wall profiles) up until and shortly after walls 
reach each other. Hence they “pass through” 
each other.
After collision interior (overlap region) is in:
 Φ*=2ΦB-ΦA

If Φ* is sufficiently far in basin of attraction 
of ΦC then field inside collision region evolves 
into ΦC and expands. 
And so we have a classical mechanism for 
bubble nucleation.   

Φ* ΦC 

ΦA 

ΦB ΦB 

ΦA 
ΦB ΦB Φ* 

ΦA ΦB 

ΦA 

ΦB ΦB 
ΦC 



Concerns
•  Most realistic avenues for energy dissipation are closed off to the 

model because it is a single field theory without gravity.
•  Is free passage realistic? Or could it be an artifact of the simplicity 

of the model?
•  Dissipation:

1.   Interactions
–  We know inflaton field interacts with other fields (fermion fields, gauge fields, etc)
–  Violent changes in a field coupled to other fields typically results in bursts of particle 

production (associated w/ add’l fields)
•  Ex: as inflation ends (violent change in inflaton field) energy is leaked into other fields in form of 

particle production

Bubble collisions are violent events.. Expect particle production if we include 
interactions. Does opening this avenue for energy dissipation yield a different 
result?

2.  Gravitational Effects
–  The inflaton field (and any additional fields built into the model) source the stress 

energy tensor, hence affect the metric (which appears in field eqns themselves). 
–  By not accounting correctly for this backreaction we ignore gravitational wave 

production which is another mechanism of energy dissipation AND is one that 
hypothetically could be observed



Interacting Field theory
•  Simplest thing to do: introduce an additional scalar field, a stand in for 

quarks, etc
•  New Lagrangian:

      Eqns of motion in Minkowski space:




•  Subtleties: not all interactions will provide a legitimate test of classical 

tunneling via free passage. Both fields would participate in FP since FP in 
multifield case involves superpositions of two component (scalar) vectors 
in field space. 

–  Single field case: Φ*=ΦA+2ΔΦ=2ΦB-ΦA had to be in basin of attraction of ΦC to get 
classical tunneling

–  Analog in multifield: 2(Φ,Ψ)B-(Φ,Ψ)A has to be in basin of attraction of (Φ,Ψ)C

à local minima in Φ-Ψ plane have to lie roughly on a line

•  so looking at 2 interactions in particular: Vint~Φ2Ψ2, Vint~Φ3Ψ 
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has the 3 local min ΦA, ΦB, ΦC



Summary of Methods


•  Purely Classical Treatment:

–  Analytic: for gΦ3Ψ
Assume FP for Φ, solution to Ψ eqn given in terms of retarded Green’s function. Consistent with E 
conservation? 
–  Numerical:
Don’t assume ΦFP, approx solution to the (2) coupled nonlinear wave equations for relevant ICs

New: Revisit Free passage argument for single field case


•  Semi-classical Treatment: for Φ2Ψ2 interaction
Treat Φ field classically and as given by FP, Ψ field as quantized

–  Background Field Method: expand action in path integral about Ψ=Ψclassical(which is Φ dep, so 
nonhomogeneous since ΦFP is nonhomogeneous).Consistent does ΦFP correspond to tremendous Ψ 
particle production that would violate E conservation?

–  Bogoliubov Transformations, assume ΦFP, compute map between early time, and late time (Ψ) creation/
annihilation operatorsà compute late time particle content of early time vacuum. Difficulty here is that 
ΦFP is nonhomogeneous. Consistent?

Vint=gΦ2Ψ2/2        local min at:


Ψ field eqn is KG 
with Φ dep mass:




IC: Φ has right/left moving wall profiles, Ψ flat with 
small fluctuations otherwise trivial soln

 

Vint=gΦ3Ψ                   local min at:

Ψ field eqn is KG with 
mass=m, and Φ dep
forcing:


IC: BOTH Φ and Ψ have right/left moving wall profiles



V(Φ,Ψ)=V1(Φ)+Vint(Φ,Ψ)+m2Ψ2/2: 
 

Φ 
Ψ 

Φ 

Ψ 
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Gravitational Effects
•  Field(s) backreact via affect on metric
•  Vary action:

•  Eqns of motion:

•  Highly nonlinear… à solve numerically
•  Introduce new variables, spatial metric and extrinsic 

curvature, so that we can formulate Einstein’s eqn as a 
Cauchy problem (ADM eqns)


•  Does this result in significant gravitational wave production? 

Observable?
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