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Overview of results

I. Design targets

« The targets provide an analytic, quantitative metric for the
relation between the geometry and the ITG instability.

il. Optimal desigh mechanisms

 The essential mechanisms by which the shaping controls
the targets are investigated.

iii. Example calculations

« Example calculations build a framework for understanding.

« Show we can analytically predict & explain trends in the
maximum linear growths rate from GENE.

Thus, a clear path to ITG optimization is shown.



A simpler approach to understanding
3-D shaping effects is needed

Success in neoclassical optimization has given rise to interest
in turbulence optimization using shaping

« Linear growth rate provides a natural “cost function”

 However, seemingly vast parameter space
 What and how we should optimize is unclear.
Thus we consider a simpler problem & methodology:

- linear ion temperature gradient mode growth rates, electrostatic,
low-beta, adiabatic electrons, no flows, 1; = 10, [t =02, L;l = 20

- local equilibrium theory -- analytic, single surface only
- ballooning/flux-tube, and assume Gaussian modes in analytics

Central question:

How does one optimize the geometric properties of a surface
along a field line for ITG modes?
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A proxy function for the growth rate is
derived using analytic ITG theory

. Ballooning/flux-tube limit, fluid limit uo/kII >>v, ., gyrokinetics theory
(Romanelli 1989) yields ODE, cubic in eigenfrequency
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Shaping controls the proxy target via
the drift and FLR coefficients

* Result indicates squared growth rate scales like Yire = — g;;i
1
* Drift coefficient  FLR/polarization coefficient
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The instabllity scaling suggests three
distinct shaping goals

Goals for shaping Physical meanings
1. Shift & maximize <|vﬂi;~|> >0 Curvature drive
—Nkg Geodesic curvature-torsion drive

2. Shift & maximize (7F) > 0

Parallel/perpendicular coupling

. A2
3. Maximize {g7pz) > 0 Shear/FLR/polarization effects

a. Minimize |V)|?
* Note that currents, global shear, and averaged torsion all related,
o= —vSs+ 27, § = —Bop’l /1 T = (BE’Tn/gﬂ”"'f’)fs/{Bz/lg';*f’@}fs
* Goal (2) implies rules for 2-D and 3-D (weak currents)

Kg - [T:r dn(Th — ) > 0 for kp <0 & 5 <0 2-D symmetry design rules

Kg - [T:r dn(7tn) < 0 for kp < 0 3-D symmetry design rules

. . ] 6
Thus, relative phases of the curvatures and torsion are crucial.



Shaping mechanisms may be broadly
categorized into a few general types

 2-D: poloidal shaping (concavity & convexity control)
R = Ro + pocos(6) + p1 cos(MO) + - -
e 3-D: three more fundamental mechanisms

- Axial translation
R = Ro + po cos(f) + p1 cos(NC) + - -
- Cross sectional rotation
R = Ry + po cos(f) + py cos(M& — NC) + - - -
- Cross sectional deformation (e.g. w/ rotation)
R = Ro + pocos(f) + p1p2 cos(NaC) cos(M — NC) + - - -
* 3-D shaping intimately tied to iota and (global) shear

- In 2-D, constraint is broken by currents
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Note optimized stellarators usually show
both rotation and deformation
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Curvature symmetries are controlled by
edge positioning

Geodesic curvature | Normal torsion
g 0 n o outboard

Normal curvature
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A framework for understanding is built
up via selective example calculations

Analytic proxy results compared w/ numerical gyrokinetics GENE

results using same equilibrium input

Local equilibrium method checked against s-alpha model '/ =
_ o1 % "U""¢S-{I
% ¢ ¢ o
<o 0.05 o o o
Simplifying assumptions for the rest of results: =8 005
- high gradients, n; = 10, L;* =2, L7} =20 SR
- geometric angles are straight field line angles 2
- limitation: manual parametrization of geometries 3@1'5 gaaaf ’
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Focus on maximum linear growth rate -- scanning over ky-rho




Concave inboard shaping yields both
drift and FLR optimization

B Analytic ®mGENE

— 1

* More averaged torsion & currents for
cases 4,5 yield larger kperp”2

* Geodesic curvature phasing is optimal
for case 5 vs. case 4

« Case 4 poor agreement — kinetic effects? =



A few geometric quantities completely
describe the surface

______ e e

Can build intuition & completely analyze geometries with ~ 10 field line plots and
handful of full surface plots. 12



Proxy result trends match GENE trends
In stellarator geometry scans

M analytic mGENE

- more triangularity -
& more shear

 GENE results from domain extending 3 poloidal circuits (n_pol=3),
proxy results with Gaussian full width of 3 poloidal circuits

« GENE shows only ~10% difference from n_pol=1to 3
13

* Proxy misses trend on case 2 but geometries 1, 2, 3 all very similar



GENE eigenfunctions clearly sit in w_d
wells and k_perp”2 troughs

:‘ ",-,;n :"‘-"' I““GENE 9'9ﬂ1

Extended GENE eigenfunction for case 2 (prev. slide), n_pol=3,

against unitized values of w_d and k_perp”2 e



The analytic proxy growth rate can be
sensitive to Gaussian mode width
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Shear scan, circular tokamak -- shear destabilizes due to increase in
curvature drive, spectra shrink to ky-rho =0
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Deformation mechanism enables
alteration of curvature symmetries

Deformation here causes the
null lines to counter-rotate with
respect to the surface

The helical
curvature
component is
notably
tuned out
compared to
a fixed M,N
stellarator

16




Advanced shaping mechanisms
necessitate numeric optimization

Local 3-D equilibrium theory developed for analytic
parametrization of a single surface

- Good for simple shaping
- Advanced shaping parametrizations cumbersome

Ex. (case from previous slide):

R = Ro + po cos(0)(1 + pe cos(NaC)?) + pa2 cos(6 — NC¢)
+ p3 cos(20 — NoC — 7 /2) sin(N /2() + ps cos(M6O — N3() Sir"n(f'\f/ZQ)2
+ d cos(N()

Ro = 6.5, po = 1.05, pg = —0.2, N = 5N, po = 0.4p0. N = 3, p3 = 0.500, Ny =
1.5N, ps = —0.2p3, N3 = 2N, 5 = 0.2p.

« Harmonics: 1 pure poloidal, deformational, rotational, and
translational, and 2 simultaneous rotational + deformational 17



Deformation shaping improves on M="1
shape at the outboard 'shoulder’

M analytic ®mGENE

Keeping the torsion
single-signed longer
allows larger

integrated shear:
more stability.




Kinetic effects appear mostly
unimportant in these parameter regimes

 Analytic model tracks trends despite lacking resonant kinetic
contributions

- Possible explanations:

* Not in the right parameter regime -- only important near threshold?

» Modes too extended -- i.e. need smaller A\ ?

Even with connection length approx. 10x shorter than tokamak,

proxy still accurately tracks GENE trends 1



Conclusions

I. Fluid-based targets have been investigated
« Scale generally with curvature and FLR terms
ii. Framework for geometric understanding shown

« Symmetry patterns dictated by edge locations in 3-D

 May be fundamentally altered & tailored via shaping
ili. Analytic model predicts GENE trends

* Mode width important in proxy, less so in GENE
iv. Results suggest continuum of shaping effects

» Geodesic curvature-torsion optimization shows promise

v. Results translate directly to STELLOPT proxy & output analysis

20



Future work

Shortest term

* Write up results for paper & do prelim
« Translate proxy for current STELLOPT implementation (Mynick et. al.)
« Support & collaborate in HSX optimization inquiries
Medium term
« More analytic focus — helps untangle large parameter space

- Analytic proxies for TEM type modes & kinetic effects
- Better estimates of mode lengths
- Better understanding of global behavior (one tube vs. another)

Longer term
* Nonlinear optimization targets -- existence, implications, etc.

- Can the nonlinear physics be optimized? .
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