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Introduction

 Laser-plasma acceleration – key technology for a new generation of 

compact particle and radiation sources.

 Table-top PW-class, short-pulse lasers (kJ on a ps scale) are 

becoming available at universities.
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 Lasers produce plasmas under 

extreme conditions, transferring 

laser energy to plasma electrons.

 Electrons deposit their energy 

into various channels leading to 

production of energetic protons, 

X-rays, positrons, or neutrons.

Texas PW in operation



Why laser-plasma accelerators?  

 Conventional particle accelerators are   

large and expensive due to the 

breakdown limit of 20 MV/m.

 Laser systems generate significantly 

higher fields (large amounts of 

electromagnetic energy in a small 

volume over a short period of time). 
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 A single electron irradiate by a plane electromagnetic wave retains 

no kinetic energy. 

 Techniques other than the vacuum-based acceleration are needed.

The Large Hadron Collider



Heating in an overdense plasma

 Laser irradiating an overdense plasma (w <<  wp) 

interacts only at the surface.

 The normal component of E extracts electrons, 

accelerates them, and re-injects them into the plasma.

 The role of the plasma: 
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 A two component electron population with a hot minority can be 

generated, provided that the injected electrons are collisionless.

to provide electrons;

to facilitate the energy retention;



Non-relativistic and relativistic regimes
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 The electron momentum gain is

 Normalized amplitude a0 determines the transition from                 

non-relativistic to relativistic regime.

 In the non-relativistic case (a0 << 1):

 The energy can be further increased via stochastic heating. 

 In the relativistic case (a0 >> 1):

 Many applications require copious electrons with 

energies in the 10’s of MeV range.
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Acceleration in a subcritical plasma

 Key advantage of subcritical plasma: 

extended interaction length. 

 Wakefield acceleration: axial field of 

the plasma accelerates electrons. 

 Wakefield acceleration produces GeV

mono-energetic electron bunches.
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 The bubble size is c/wp, so the pulse must be shorter  (t << 1/wp).

 The bubble size limits the number of accelerated electrons (Ne << Ni).

 A non-wakefield mechanism is needed to produce copious energetic 

electrons.
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Positron production

(S. Wilks)

Non-wakefield regime   

Neutron production

(I. Pomerantz)

 Regime of interest: long high-intensity laser 

pulse (t >> 1/wp and a0 >> 1) irradiating an 

extended subcritical plasma (wp << w and l >> ).

 What is the heating mechanism in this case?

 Laser prepulse creates an extended subcritical 

preplasma in experiments with solid targets. 

 This regime plays a critical role in 

proton acceleration;

generation of positron jets;

neutron generation (ultrashort source);

x-ray generation (bright, short source);



Channel formation in low-density plasma
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 Laser beam expels electrons,

creating an ion channel (t >> 1/wp).
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 Electrons are continuously injected 

into the channel near the opening.

 Electrons are radially confined,

performing betatron oscillations 

while moving forward.

 The number of accelerated 

electrons is only limited by the 

channel expansion time.Positively charged

channel



 At a0 >> 1, longitudinal acceleration by the Lorentz force is significant. 

 Most of the energy is associated with the forward motion (                        ). 

 An upper limit on the g-factor is gvac = 1 + a0
2/2 (best case scenario).

 The energy gain inside a beam is lower due to the transverse expulsion.   

Vacuum motion at a0 >> 1
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 Is there a way to generate super-ponderomotive electrons (g > 1 + a0
2/2)?

 Can the accelerated electrons retain their energy?

 Conventional understanding: electron energy enhancement is possible 

via the betatron resonance.

Motion in a channel at a0 >> 1

What physics is

missing in the

conventional 

picture? 

small initial

displacement

Betatron oscillations 

driven by the field 

of the wave

Amplification of 

betatron oscillations 

across the laser 

electric field! 



Single-electron model in a 2D channel
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 We decouple the electric field of the laser and the field of the 

channel by choosing a 2D spatial setup. 

 Consider a case where the laser electric field is perpendicular to the 

field of the channel. 

Ewave



Main equations
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 Betatron oscillations are coupled 

to the axial motion through g.

 Axial motion in the wave strongly 

modulates g even in vacuum.

 Prior to significant amplification, 

the system reduces to

Natural frequency 

is modulated at 

2w



Parametric amplification of oscillations
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 Ultrarelativistic axial motion enhances the ion density in a co-moving frame. 

 Axial acceleration and deceleration modulate the perceived ion density.

 Oscillations become unstable when the period of the modulations becomes 

comparable to the period of the betatron oscillations:

Stable oscillations
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Parametric amplification of oscillations
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 Ultrarelativistic axial motion enhances the ion density in a co-moving frame. 

 Axial acceleration and deceleration modulate the perceived ion density.

 Oscillations become unstable when the period of the modulations becomes 

comparable to the period of the betatron oscillations:

Unstable oscillationsStable oscillations
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0 0pa cw 
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 The axial momentum gain is 

limited by the dephasing rate:

 There is an integral of motion:

 The dephasing rate is constant in the vacuum case:

 Amplification of betatron oscillations 

reduces the dephasing 

Enhancement of axial acceleration
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Threshold for energy enhancement
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 The effect is present regardless 

of the laser field orientation.

 The onset of the energy 

enhancement is determined by 

 The underlying mechanism is an 

instability and not a resonance. 

 The enhancement occurs for a 

wide range of parameters above 

the threshold. 

Effect of laser polarization 

a0wp/w

gmax/gvac

no driving

field
driving field 

across channel
 

0 pa w w



Key aspects of the parametric amplification (recap):

axial motion induces a modulation in g

the modulation makes betatron oscillations unstable

amplification of the oscillations reduces the dephasing

reduced dephasing leads to energy enhancement
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PIC simulations of electron heating

 We have performed 2D PIC simulations for a target with and without a 60 mm 

preplasma using the Plasma Simulation Code (PSC). 
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Main observations

 There is a super-

ponderomotive tail in the 

presence of the preplasma.

 The shape of the spectrum is 

not sensitive to the laser beam 

polarization.

 The maximum electron 

energies exceed the analytical 

prediction.

0 10a 

super-ponderomotive 

tail

What else might 

be missing?



What key factors are affecting electron 

acceleration in a channel? 

21

Transverse quasistatic electric field inside the ion 

channel 

Longitudinal quasistatic electric field at the entrance 

of the channel



Self-generated static axial field
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 Static axial electric field is  

maintained at the entrance into 

the channel.

 Electrons pass through this 

region before being 

accelerated by the laser.



Effect of axial electric field

 Consider an electron accelerated in a vacuum by a plane wave that 

crosses a region with a weak axial electric field.

 Key findings:
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Super-ponderomotive electrons
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 Axial electric field launches 

electron onto a super-

ponderomotive trajectory.

 Axial acceleration by the 

field is relatively small.

interaction

region

axial 

acceleration 

is small



Self-consistently formed channel 

 We have performed simulations for                              and

 The total energy absorbed by electrons increases by a factor of            .

 At lower density, the channel is fully evacuated and no electrons sample the 

axial field.  
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Role of a weak axial field (recap):

axial electric field reduces the dephasing

direct energy gain from the field is small

subsequent interaction with the laser leads to a 

significant energy enhancement
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Simulation resolution constraints

 Particle-in-cell codes are often used for simulating this 

problem.  

 Calculated electron spectra are sensitive to the 

resolution (spatial and temporal) even when the wave-

length and the wave-period are well resolved.

 What resolution is needed to correctly reproduce the 

electron dynamics in these regimes?
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PIC particle tracking results
 The deviation from the analytical solution is considerable.

 The deviation becomes more severe for higher a0.

 The errors in dephasing accumulate near the stopping points.
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Phase space Dephasing rate



Temporal resolution criterion

 The strongest acceleration is near a stopping point:

 The non-relativistic part of the trajectory is well resolved if 

 At the stopping point, errors in momentum comparable to mec lead to 

a considerable change in the dephasing rate.

 This effect is similar to pre-acceleration and leads to significant 

changes in subsequent acceleration.
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Particle pusher sub-cycling

 Within the particle pusher, the error occurs due to significant rotation of the 

electron momentum caused by strong acceleration. 

 We introduce a critical rotation angle and reduce the time-step if the rotation 

angle is too large.  

 The sub-cycling is efficient, since it affects only vicinities of stopping points.
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Summary

 Electron interactions with transverse and longitudinal electric fields 

of the channel can lead to super-ponderomotive energies. 

 In the case of the transverse field, the effect results from 

parametric amplification of the betraton oscillations.

 In the case of the axial field, the effect results from a direct 

reduction of the dephasing by the static field and this mechanism 

is complementary to the parametric amplification.

 The temporal resolution in PIC simulations must be significantly 

less than 1/a0w to correctly reproduce these effects.
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Conclusions

 Prepulse can play a significant role in determining the 

performance of the secondary particle sources.

 Preplasma must be well characterized for a reliable 

interpretation of experimental results.

 The next step is to optimize the preplasma based on the 

application (proton acceleration, positron production).

 It might be possible to produce a desired “preplasma” in 

a two pulse set-up or by using an additional medium.
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