Control of linear modes in cylindrical resistive MHD with a resistive wall, plasma rotation, and complex gain

Dylan Brennan¹ and John Finn² contributions from Andrew Cole³

Princeton University / PPPL
 Los Alamos National Laboratory
 Columbia University

October 3, 2014

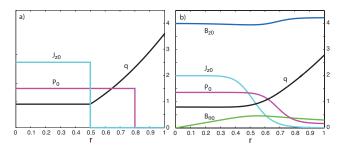
Outline

- Final step before full toroidal, resistive MHD control study: Linear cylindrical tokamak model with finite β for control of resistive-plasma resitive-wall modes, using a combination of normal and tangential magnetic field measurements
- Comparison of Full Resistive MHD with diffuse profiles compared with Analytic Reduced MHD in step function profiles, facilitates understanding of the origin physics results
- ► Marginal stability values $\beta_{rp,rw} < \beta_{rp,iw} < \beta_{ip,rw} < \beta_{ip,rw}$ (resistive or ideal, plasma or wall) indicate transition points
- ► Imaginary gain \sim plasma rotation stabilizes below $\beta_{rp,iw}$ because rotation supresses the diffusion of flux from the plasma out through the wall
- More surprisingly, imaginary gain or rotation **destabilizes** above $\beta_{rp,iw}$ because it prevents the feedback flux from entering the plasma through the resistive wall.
- ▶ Method of using complex gain to optimize in the presence of rotation for $\beta > \beta_{rp,iw}$.

Full MHD Computation compared with Reduced MHD Analytic model for Intuition

Model 1: Reduced MHD	Model 2: Full MHD	
stepfunction profiles	smooth profiles	
$j_{z0}(r) = 2\Theta(a_1 - r)$ and	$j_{z0}(r) = \frac{2}{(1+(r/a_1)^8)^{5/4}}$ from	
$p_0(r) = p_0(0)\Theta(a_2 - r).$	Furth, Rutherford, Selberg	
	(Flattened) and	
	$p_0(r) = \frac{p_{00}}{(1 + (r/a_2)^{16})^{9/8}}$	
Ideal outer region, Tearing layers	Plasma resistivity, viscosity	
either RI regime $(\gamma_d \tau_t)^{5/4} - \Delta_1$	constant: $S = 10^5 - 10^8$,	
or VR regime $\gamma_d \tau - \Delta_1$	P = 0.01	
$a_1 < r_t \lesssim a_2$ Pressure drive outside r_t enhances wall interaction;		
(somewhat mimics toroidal external kink)		
Resistive wall by thin wall approximation. $\gamma \tau_w \tilde{\psi}(r_w) = [\tilde{\psi}']_{r_w}$		
Feedback by control equation. $\tilde{\psi}(r_c) = -G\tilde{\psi}(r_w) + K\tilde{\psi}'(r_w - r_w)$		
Rotation by Doppler shift. $\gamma_d \equiv \gamma + i\Omega$.		

Equilibrium Models are comparable



Model 1: Reduced MHD	Model 2: Full MHD
$a_1 = 0.5, a_2 = 0.8, r_w = 1, r_c = 0.8$	$a_1 = 0.55, a_2 = 0.7, r_w = 1, r_c = 0.55$
1.5, q(0) = 0.9	1.5, q(0) = 0.8.
$q(r) = q(0)$ for $r < a_1$ and	$B_z(r)$ from radial force balance
$q(r) = q(0)\frac{r^2}{a_1^2}$ for $r > a_1$ where	$j_{\theta 0}B_{z0} - j_{z0}B_{\theta 0} = p'_0(r)$ by
$q(0) = B_0/R$ and R is the major	$\frac{B_{20}^2}{2} = \frac{B_0^2}{2} + p_{00} - p_0(r) -$
radius	$\int_0^r j_{z0}(r') B_{\theta 0}(r') dr'$.
	$B_0 = B_{z0}(0)$ specifies $q(0)$

Model 1: Analysis simplified to a matching problem between regions

Outer region

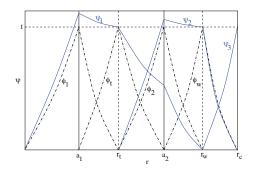
$$\nabla_{\perp}^{2}\tilde{\psi} = \frac{mj'_{z0}(r)}{rF(r)}\tilde{\psi} + \frac{2m^{2}B_{\theta0}^{2}(r)p'_{0}(r)}{B_{0}^{2}r^{3}F(r)^{2}}\tilde{\psi}$$

$$= -A\delta(r - a_{1})\tilde{\psi} - B\delta(r - a_{2})\tilde{\psi}$$
Solution can be expressed by a basis set
$$\tilde{\psi}(r) = \alpha_{1}\psi_{1}(r) + \alpha_{2}\psi_{2}(r) + \alpha_{3}\psi_{3}(r)$$
With matching conditions at
$$\gamma_{d}\tau_{t}\tilde{\psi}(r_{t}) = \left[\tilde{\psi}'\right]_{r_{t}} \text{ Tearing layer}$$

$$\gamma\tau_{w}\tilde{\psi}(r_{w}) = \left[\tilde{\psi}'\right]_{r_{w}} \text{ Resistive wall}$$

$$\tilde{\psi}(r_c) = -G\tilde{\psi}(r_w) + K\tilde{\psi}'(r_w -)$$
 Feedback

Model 1: Basis functions allow for analytic solution construction



- Basis function method (from early Culham years?) of separating the solution into zones with superimposed solutions shielded from neighboring resonant surfaces or conducting walls.
- Further separating the solution into the plasma response (ψ_1) and the resistive wall / control coil external solution (ψ_2) simplifies the analysis into a 2x2 matrix structure for coefficients of ψ_1 and ψ_2 . (ψ_3) , the control flux then determined)

Model 1 : Simple 2x2 Matrix Structure offers Intuitive Understanding

For VR regime

$$\begin{pmatrix} \Delta_{1} - \gamma_{d}\tau_{t} & l_{21} \\ l_{12} - Kl_{32}l_{12} & \Delta_{2} - \gamma\tau_{w} - Gl_{32} + Kl_{32}l_{22}^{(-)} \end{pmatrix} \begin{pmatrix} \alpha_{1} \\ \alpha_{2} \end{pmatrix} = 0$$

VR: $\tau_t \sim S^{2/3}$ for Pr = 1.

 $\Delta_1 = 0$ is at $\beta_{rp,iw}$

 $\Delta_2 = 0$ is at $\beta_{ip,rw}$.

Equivalence of wall rotation and G_i (Finn-Chacon 2004)

For RI regime $\tau_t \sim S^{3/5}$ and $\gamma_d \tau_t \to (\gamma_d \tau_t)^{5/4}$

For VR or RI can in principle stabilize up to $\beta_{ip,iw}$ ($\Delta_1 = \Delta_2 = \infty$) using both G and K.

Model 2: Full MHD model includes finite β , compressibility, parallel dynamics, resistivity, viscosity

$$\begin{split} \gamma \widetilde{\mathbf{v}} &= \left(\nabla \times \widetilde{\mathbf{B}} \right) \times \mathbf{B}_0 + \mathbf{j}_0 \times \widetilde{\mathbf{B}} - \nabla \widetilde{p} + \nu \nabla^2 \widetilde{\mathbf{v}} \\ \\ \gamma \widetilde{\mathbf{B}} &= \nabla \times \left[\widetilde{\mathbf{v}} \times \mathbf{B}_0 - \eta \nabla \times \widetilde{\mathbf{B}} \right] \\ \\ \gamma \widetilde{p} &= -\widetilde{\mathbf{v}} \cdot \nabla p_0 - \Gamma p_0 \nabla \cdot \widetilde{\mathbf{v}} \end{split}$$

Finite difference discretization (with variable grid density) leads to the standard matrix form:

$$\gamma \left(\begin{array}{c} \tilde{v} \\ \tilde{B} \\ \tilde{p} \end{array} \right) = \mathbf{M} \cdot \left(\begin{array}{c} \tilde{v} \\ \tilde{B} \\ \tilde{p} \end{array} \right)$$

Model 2: Boundary Conditions in Full MHD: Resistive Wall and Control

Boundary conditions at resistive wall include effect of control coil and complex gain, equivalent to reduced model

$$\gamma_{d}\tilde{B}_{r}(r_{w}) = ik \cdot B_{0}\tilde{v}_{r}$$

$$im\tilde{v}_{r}/r + r\partial_{r}(\tilde{v}_{\theta}/r) = 0$$

$$ik\tilde{v}_{r} + \partial_{r}\tilde{v}_{z} = 0$$

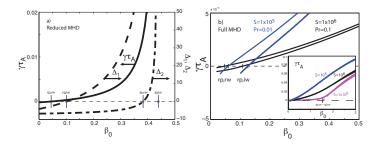
$$\partial_{r}(r\tilde{B}_{\theta}) - im\tilde{B}_{r} = 0$$

$$\gamma_{d}\tilde{p} = -\tilde{v}_{r}\partial_{r}p_{0}(r_{w}) - \Gamma p_{0}(r_{w})(\nabla \cdot v)_{r_{w}}$$

$$\gamma\tau_{w}\tilde{B}_{r} = [\tilde{B}'_{r}]_{r_{w}}$$

$$\tilde{B}_r(r_c) = \left[-(Gr_w - K)\tilde{B}_r(r_w) + Kr_w \tilde{B}_r'(r_w -) \right] / r_c$$

Results: γ vs. β showing $\beta_{rp,rw} < \beta_{rp,iw} < \beta_{ip,rw} \lesssim \beta_{ip,iw}$; analytic and numerical



- For Growth rate γ for the analytic model (a), with $\beta_{rp,rw} = 0.045$, $\beta_{rp,iw} = 0.101$, $\beta_{ip,rw} = 0.383$, $\beta_{ip,iw} = 0.440$. At $\beta_{rp,iw}$, Δ_1 equals zero and at $\beta_{ip,rw}$, Δ_2 equals zero.
- Numerical results in (b), showing $\beta_{rp,rw} = 0.04 \ \beta_{rp,iw} = 0.11$, and $\beta_{ip,rw} \lesssim \beta_{ip,iw}$.
- Large ideal limits are due to diffuse profiles (computationally advantageous), while the focus is on the lower limits $\beta_{rp,rw}$ and $\beta_{rp,iw}$.

In toroidal (DIII-D) configurations the upper limits at far lower β , limits in same order

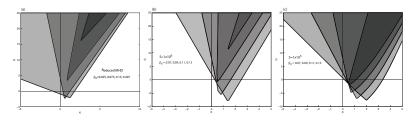
x 10⁴15 Resistive / ideal plasma limits with / without a (perfectly) conducting σ wall indicates (without rotation or control) four -0.3 -0.2 ψ (Wb) -0.1 β limits. R (m) R (m) DIII-D 125476 S=T_R/T_A=10⁸ non-viscous PEST-III resistive plasma ßlimits q_{min}=1.08, flat top 3.1 wall conformal at r =1.1a β_N wall at r_w=1.1a no wall 2.8 0.1

Next steps: resistive wall and control in toroidal. For now: cylindrical.

1.06

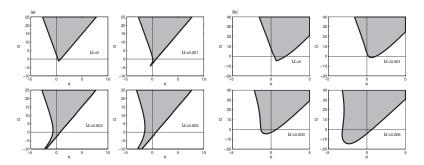
2.7

G-K Maps with $\Omega = G_i = K_i = 0$ Show similar structure between reduced and full MHD models



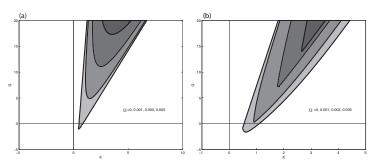
- ▶ (a) Analytic model with $\beta_0 = 0.025$, 0.075, 0.15, and 0.225. The left boundary is vertical at $\beta_0 = 0.101 = \beta_{rp,iw}$.
- ▶ (b) Full MHD with $S = 10^6$ with $\beta_0 = 0.07, 0.09, 0.11 = \beta_{rp,iw}$, and $\beta_0 = 0.13$, and the left boundary is indeed vertical at $\beta_{rp,iw}$.
- (c) Full MHD with $S = 10^5$ with the same β_0 values as (b) and the left boundary is also vertical as $\beta_{rp,iw} = 0.12$ is crossed.
- Qualtivative structure of the maps is captured by reduced MHD (a). Both results have vertical line at $\beta_{rp,iw}$. Effects of Ω , K_i and G_i change above $\beta_{rp,iw}$, where Ω becomes destabilizing.

Results qualitatively similar between Analytic and Full MHD models for $\beta < \beta_{rp,iw}$: Increasing Ω Stabilizing



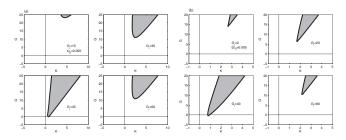
- (a) Analytic with $\beta_0 = 0.068 < \beta_{rp,iw} = 0.101$.
- (b) Full MHD with $\beta_0 = 0.09 < \beta_{rp,iw} = 0.12$.
- The results show that increasing Ω increases the stable area for $\beta_0 < \beta_{rp.iw}$ except for small Ω .

Results: $\beta > \beta_{rp,iw}$ where Ω is Destabilizing; analytic and numerical



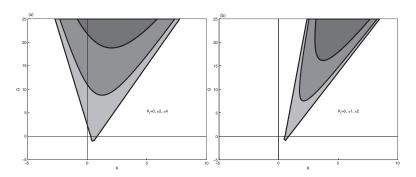
- \triangleright $S = 10^5$, $G_i = K_i = 0$ and varying rotation Ω.
- (a) simplified model with $\beta_0 = 0.12$ (b) full MHD model with $\beta_0 = 0.13$.
- The plasma Doppler shift frequencies in (a) and (b) are $\Omega = 0$, 0.001, 0.003, 0.005.
- ► These results show that for $\beta_0 > \beta_{rp,iw}$ the stable region shrinks as $|\Omega|$ increases.

Given a particular Ω , Gi can optimally counter and have the largest stable window equivalent to Ω =0; analytic and numerical



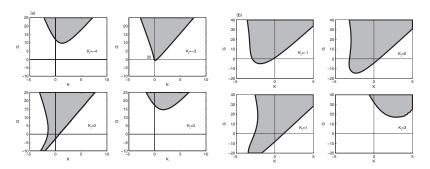
- ▶ In (a) we have reduced MHD same as above except for the wall time, which is made equal to the numerical case, $\tau_w = 2 \times 10^4$, and $G_i = 15, 30, 45, 60$.
- ► In (b) we have full MHD with parameters same as above, with $G_i = 0, 20, 40, 80.$
- ► There is an optimal value of G_i ; for this value the effective wall rotation rate Ω_w is equal to Ω and the stable region is maximized. G_i equivalent to Ω_w .

Analytic Results: With $\Omega = 0$, finite K_i is destabilizing for $\beta < \beta_{rp,iw}$ and $\beta > \beta_{rp,iw}$



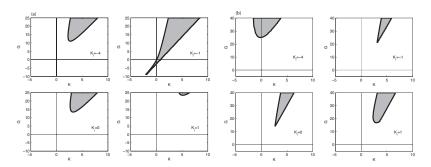
- ► Stability diagrams for the reduced MHD model only
- (a) $\beta_0 = 0.068 < \beta_{rp,iw}$ with $K_i = 0, \pm 2, \pm 4$
- (b) $\beta_0 = 0.15 > \beta_{rp,iw}$ with $K_i = 0, \pm 1, \pm 2$.
- ▶ In both regimes of β_0 , K_i decreases the size of the stable region.

With $G_i = 0$, $\Omega = 0.005$, K_i is destabilizing for $\beta < \beta_{rp,iw}$; analytic and numerical



- (a) Reduced MHD model with $\beta_0 = 0.068$
- (b) the full MHD model with $\beta_0 = 0.09$.
- ▶ Optimal value of $|K_i|$ is small and larger values destabilize in the $\beta_0 < \beta_{rp,iw}$ regime.

With $G_i = 0$, $\Omega = 0.005$, K_i has an optimal value for $\beta > \beta_{rp,iw}$; analytic and numerical

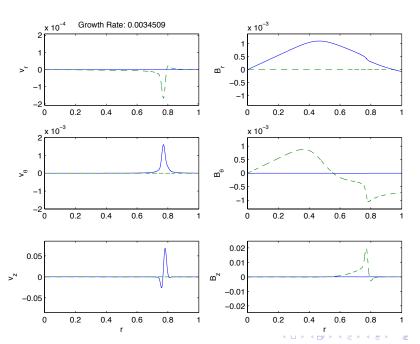


- (a) Reduced MHD model with $\beta_0 = 0.15$
- ▶ (b) Full MHD model with $\beta_0 = 0.13$
- ▶ In (a) the optimal value of K_i is -1. In (b) the stability regions are more complex, but optimal for $|K_i|$ small.

Summary

- ▶ Feedback with complex gain G multiplying normal component of $\tilde{\mathbf{B}}$ and complex gain K multiplying tangential component. G_i and K_i represent simple phase shift of coils.
- Full resistive MHD model agrees with reduced resistive MHD model using stepfunction profiles
- For $\beta < \beta_{rp,iw}$ rotation Ω and $G_i \sim \Omega$ stabilize, as expected. K_i stabilizes in different way
- ► For $\beta > \beta_{rp,iw}$ rotation Ω and G_i destabilize. K_i destabilizes too
- ▶ In $\beta > \beta_{rp,iw}$ regime with Ω : can optimize the feedback stable region by applying G_i such that $\Omega_w = \Omega$. There is an optimal K_i too, but no obvious equivalence

Example Eigenfunction shows layer response



Example Eigenfunction shows layer response

