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This talk is about  
burning-plasma physics not fusion energy 



Alpha particle heating is the mechanism leading 
to thermonuclear ignition of Deuterium-Tritium fuel 

The α-particles release their energy in the plasma 
thus causing self-heating (or alpha heating). 

Deuterium Tritium 

Alpha particles (3.5MeV) slow 
down in the plasma through 
collisions with the electrons 

Neutrons (14 MeV) leave 
without depositing its energy 
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Ignition condition 

alpha-power> power-losses 
The plasma gets hotter  and produces more fusion 

reactions leading to a thermal runaway  
 Thermonuclear instability  Ignition 

FSC 

Electrons transfer 
heat to D and T ions 

PLASMA 



The National Ignition Facility (NIF)  can explore 
 both indirect- and direct-drive ICF 

Au Hohlraum 
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Current ignition experiments on NIF use indirect drive 

~2mm 
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Implosions are hydrodynamically unstable due 
to the Rayleigh-Taylor instability 

or x-ray 
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Driving ICF targets is a very inefficient process  

Only a small fraction of the driver energy is converted into 
useful kinetic energy of the implosion 

Vi 

Expanding ablated 
(blow-off) plasma 
(CH) Examples:  

 
NIF Indirect Drive 
Laser energy = 1.8MJ 
Shell final kinetic energy = 14kJ 
Total efficiency = 0.8 % 
 Ablator 

DT ice DT  vapor 
Useful kinetic energy =  2
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Vi = implosion velocity 
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The imploding shell has two functions: (a) heating of the central  
low-density plasma (hot spot) to ignition temperatures,  
(b) providing the “inertial” confinement 

2
i

shell
unablatedVM

2
1 ~50% 

~50% 

Compression and heating of the central hot spot 

Compression of the dense shell to provide the “inertial” 
 confinement 
  

Hot spot 
  5 KeV 

Dense shell 
~ 500-1000 g/cc 

Provides the confinement of the hot spot and 
a large supply of thermonuclear fuel 

Ignition takes place 
 in the hot spot 

COMPRESSED CORE AT STAGNATION 

Useful kinetic energy 
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Up to the onset of ignition, burning plasmas are 
confined within the “hot spot”  

Hot spot 
~5kJ 

Dense 
Shell 
~ 5kJ 
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The energy balance determines the time evolution 
of the plasma pressure  

Fusion 
Plasma 

(HOT SPOT) 

• The DT plasma is brought to a pressure Pnoα  
     by a spherical piston (the imploding shell) 
 
• The alpha particles deposit their energy 
     in the plasma while the plasma looses 
     energy on a time scale τ 
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ENERGY BALANCE 

(0) noP P α=

Pnoα  

Fusion reactivity 

3.5 MeV 
Confinement time 2P nT≈
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Note: Sα has the dimensions of Pτ 

The dimensionless form of the energy balance 
only depends on the no-alpha Lawson1 parameter 

 No-alpha Lawson parameter 
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Lawson, Proc. Phys. Soc. London (1957) 
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The explosive solution defines the ignition condition 
determined by the no-alpha Lawson parameter 
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ˆ ˆ ˆ 1ˆ no
dP P P
dt αχ = −  ( )ˆ ˆexpP t= −

• Neutron yield including alpha particle heating for subignited plasmas 

• Neutron yield if alpha particle heating is switched off 
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A neutron yield with alphas and a yield without 
alphas can be defined 

Yieldα is measured in the experiments 

Yieldnoα cannot be measured in DT experiments 
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The amplification of the yield due to alpha heating is 
a unique function of the no-alpha Lawson parameter  
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How can one measure the no-alpha Lawson parameter? 
Start from estimating the confinement time τ 

R 

Hot spot 

DT Dense shell 
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DTM R P Rπ= −
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DT shellM Rρ ∆ 3~V R

Newton’s law of the dense shell 
confining the hot spot pressure 

Shell mass 
Areal density 

∆ 
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A simple formula relates the Lawson parameters 
with and without alphas (using previous slide) 

• Yieldα is measured 
• Areal density ρ∆ is measured 
• Mass of shell is known 

χα can be measured 
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The amplification of the yield due to alpha heating is also 
a unique function of the Lawson parameter with alphas  
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 χα can be measured 

Yield amplification   
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Best NIF shot 

Best High-Foot NIF shot: 
ρR ≈ 0.7g/cm2, Yield = 1016,  MDT = 0.17mg  

In the best NIF shot the fusion yield increased 
 by about 2.5x due to alpha heating  

Ignition 

♦ 1D-simulations 

• 2D-simulations 
analytic 

♦ 1D-simulations 

• 2D-simulations 

analytic 
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A significant amount of alpha particle energy (relative to 
the pdV work) was obtained in NIF shot N140120 
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MFE 

ICF (analytic) 
MFE (analytic) 

• ICF 1D-simulations 

• ICF 2D-simulations 

ICF input

EQ
E

α α=

fusion
input

E
Q

E
=

NIF(HF) 
Efus=26kJ 

The alpha heating contribution can be compared 
between ICF and MFE (only physics here, no energy)  

Burning 
plasma 
threshold 

   Robust   
   burning   
   plasma 
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NIF/ID
fusionE ~ 60kJ



NIF/ID
fusionE 130kJ

alpha heating burning plasmas 
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How was the alpha heating result achieved 
by O. Hurricane and his team at LLNL? 
 
Hurricane et al, Nature, March 2014 
Parks et al, Phys. Rev. Lett. 2014 
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26kJ 

Recent shots 
added by Betti 

O. Hurricane, APS DPP 
meeting (2013) 



Stronger picket Drop this precompession 

Low 
foot 

High 
foot 

The high foot pulse set 
the imploding shell on a 
higher isentrope α (nothing 
to do with alpha particles) 
because it launches 
stronger shocks in the  
“foot” of the pulse when 
 the shell density is low 

The  best NIF implosions used the High-Foot 
laser pulse that drives stronger shocks in the “foot” 

O. Hurricane, APS DPP 
meeting 



O. Hurricane, APS DPP 
meeting 

High-foot growth-factor calculations and simulations are       
consistent with the expectation of less instability 



Despite the exciting results, the path to ignition is 
uncertain with current indirect-drive targets 

2
0.37 0.4

noα kin 3/5χ ~E YOC imp

F

V
α

noαχ 0.65≈Best shot to date  

YOC is   50% in NIF High Foot≥

Easiest options to approach ignition: Increase Vimp and/or 
reduce the Adiabat (this is the current path of the HF campaign) 
but stability may eventually become an issue again (YOC drops) 

YOC = Yield-Over-Clean = Yield(3D)/Yield(1D)  

Needed for ignition  noαχ 1≈

no-α ignition parameter in terms 
of in-flight properties 

Ekin = kinetic energy 

Vimp = Implosion Velocity 

αF = Adiabat (entropy) 

Direct-drive 
High Velocity 
(420km/s) 
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The current path to indirect drive ignition includes: 
Higher velocity, mitigating the Rayleigh-Taylor 
instability, trying new ablators and new hohlraums 

Near Vacuum Hohlraums have the potential of eliminating the Laser-Plasma- 
Instabilities problem leading to better control of the implosion symmetry 
and greater x-ray energy 
 
HDC (diamond) Ablator has higher density and requires shorter laser pulses 
allowing the use of vacuum hohlraums (with less energy losses due to  
laser-plasma instabilities) 
 
Beryllium Ablator has greater hydrodynamic efficiency allowing a more 
massive (and more stable) shell to be imploded 
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Direct-Drive Laser Fusion 



Ignition attempts using direct drive require 
repointing the NIF beams (polar direct drive)  

FSC 

Initial experiments are in progress to test direct-drive on NIF 



Hydrodynamic equivalence provides a tool to scale the 
performance of OMEGA implosions to NIF energies 
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Hydro-equivalent scaled-down experiments are carried out on OMEGA  



Threshold depends on 
the level of nonuniformities 

OMEGA implosions continue to improve towards 
the goal of demonstrating hydro-equivalent 
ignition at 1.5MJ of laser energy 

Ignition on NIF 
possible but uncertain 

Ignition on NIF likely 

OMEGA 

O
M

EG
A 
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noα 

R. Nora et al, Phys. Plasmas (2014) 



The performance of direct drive capsules is currently 
 degraded by Cross-Beam-Energy-Transfer 
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Picket are 
NOT zoomed 

Main pulse 
is zoomed 

Techniques to mitigate Cross-Beam Energy Transfer 
include zooming phase plates and two-color split 

FSC 
Zooming Phase Plates1 

2 

1D. Froula et al, submitted to Phys. Plasmas (2013) 
2I. Igumenshchev et al, Phys. Plasmas 19, 056314 (2012) 
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Shock ignition is an alterative ignition scheme to 
achieve higher pressures than conventional ignition 

R. Betti et al, Phys. Rev. Lett. , 98, 155001 (2007) 
D. Batani et al, Review, Nuclear Fusion (2014) 
S. Atzeni et al, Review, Nuclear Fusion (2014) 
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Experimentally inferred ablation pressures above 
300Mbar exceed the requirements for shock ignition 

R. Nora et al, in press in Phys. Rev. Lett. 

Planar experiments achieved 35-70Mbar 
S. Baton et al, Phys. Rev. Lett. (2012) 
M. Hohemberger et al, Phys. Plasmas (2014) 



The recent results from the NIF are exciting and give 
hope of achieving burning plasma conditions 

• This is only fusion physics and reaching any conclusion about 
   fusion energy is premature 

• The possibility of producing a burning plasma is real and 
   the indirect drive approach seems to be on the right path 

• The path to ignition and gain is still uncertain, but the prospects 
   are much brighter than ~ 12 months ago   

conclusions 

• Significant alpha heating of a DT plasma has been demonstrated on NIF. 
   Estimates indicate that heating from the alphas has more than double 
   the number of fusion reactions 

• Direct-drive offers a promising alternative path to ignition and initial  
  polar direct-drive experiments on NIF are currently under way 
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