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Theses 

•  The stability of MHD modes is evaluated in the presence of an 
equilibrium weakly perturbed by a topology-preserving 3-D 
distortion.  Two classes of instabilities 
–  Infinite-n ballooning stability 

•  Strong modifications to marginal stability 
•  Sensitivity to lower order rational surfaces 
•  Indicative of any ‘local’ microinstability behavior 

–  Finite-n ‘peeling-ballooning’ stability 
•  Weak 3-D equilibrium is generally destabilizing 
•  Modest changes to growth rates  
•  Not as sensitive to variations in profiles 

•  Working towards a model for how 3-D applied fields can prevent 
ELMs in H-mode tokamaks. 
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Motivation:  Understanding the physics of RMP 
suppression of ELMs  

•  Controlling edge localized modes (ELMs) is crucial for H-mode 
tokamak operation 
–  Prominent control mechanism is the use of Resonant 

Magnetic Perturbations (RMPs) 
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Evans et al, 
NF ‘08 

Evans et al,  
Nature Physics ‘06 



Hegna, Columbia Univ, 5/2/14	

University of Wisconsin-Madison	


Plasma rotation shields RMPs from producing 
stochastic magnetic fields 
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•  Original intention of RMPs  stochastic magnetic fields  greatly 
enhance edge transport   eliminate drive for MHD stabilities 

•  However, plasma response is important  Plasma rotation 
provides shielding (Ferraro PoP ‘12, Liu et al NF ‘11, Becoulet et 
al NF  ’12 …) 

Nardon et al, 
NF ‘10 

With shielding w/o shielding 

•  With shielding, flux surface  
integrity restored 
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Profile data suggests  
stochastic mechanism is not present 

•  With RMP, electron temperature profile is not flattened in 
pedestal.  Pedestal pressure gradient is unaffected RMP 
–  Extent of pedestal altered with RMP  

•  What’s happening? 
–  Various ideas  
developing  
(Wade APS 2011, 
Callen et al PoP ’12, 
 …) 
–  THIS TALK 
3-D geometry affects 
pedestal stability  model for ELM suppression 
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No RMP 
Icoil = 4.0 kA 
Icoil = 6.3 kA 
	

	

	

	

Evans et 
al NF ‘08 
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Outline 

•  Motivation and Background 

•  “Local” MHD stability with weakly 3-D equilibrium  proxy for 
micro-instability and anomalous transport 

•  “Global” MHD stability with weakly 3-D equilibrium 

•  Scenario for RMP stabilization 
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Outline 

•  Motivation and Background 

•  “Local” MHD stability with weakly 3-D equilibrium  proxy for 
micro-instability and anomalous transport 

•  “Global” MHD stability with weakly 3-D equilibrium 

•  Scenario for RMP stabilization 

7	




Hegna, Columbia Univ, 5/2/14	

University of Wisconsin-Madison	


The intermediate-n stability of ideal MHD modes are 
thought responsible for ELM onset   

•  Pedestal region  steep gradients, edge (bootstrap) current 
–  Drives for ideal MHD instability 

•  Edge currents (peeling modes) 
•  Pressure gradient/bad curvature (ballooning modes) 

–  At intermediate-n, both free energy sources available  
“peeling-ballooning mode” 

•  Prominent stability tool is ELITE  

8	


CCH et al, 
PoP ‘96 Snyder et  

al, PoP ‘02 

Wilson et al,  
PoP ‘02 

unstable 

stable 
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Both ‘local’ and ‘global’ MHD instabilities are 
thought to play a role in pedestal physics 

•  MHD elements thought to be important in pedestal (Snyder et al ’09) 

    Ballooning drive common to many  
    microinstabilities (KBM, ITG, RBM,…) 
    Curvature drive for a mode that twists 
    with sheared B 
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Intermediate-n (~10) 
‘peeling-ballooning’ 
modes --- global 
mode structure  

‘Local’ micro-
instabilities --- “∞-n” 
ideal ballooning used 
as a proxy for KBM 

Snyder et al, PoP ‘02 

!n +!!g

! =
g""

B
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B
B2
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EPED1 model utilized to predict self-consistent 
pedestal height & width 

•  EPED1 model incorporates two constraints to self-consistently 
determine pedestal height and width 
–  Two constraints:  Peeling-Ballooning, KBM 
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Snyder et al, PoP ‘09 

Groebner et al, PoP ‘10 
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3D flux surface deformations have been measured 
when non-axisymmetric fields are applied 

•  From MAST, DIII-D, substantial 3-D deformations have been 
observed when non-axisymmetric fields are applied 

•  Deformations produced by RMP induced stable “kink-like” 
response 
–  This effect can be modeled for MHD stability calculations of 

3-D equilibrium 
11	


Kirk et al, PPCF ‘13	
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Understanding the role of 3-D fields on pedestal 
properties crucial for interpreting RMP physics 

•  Applied RMPs 
–  Rotation provides shielding (small islands) 
–  Substantial 3-D deformation of MHD equilibrium 

•  Pedestal properties determined by: 
–  Micro-instabilities (e. g., KBMS) 
–  Peeling-ballooning stability (n ~ 5-30) 

•  This work  Effect of shielded non-axisymmetric magnetic fields 
–  Local MHD stability? 
–  Global modes? 
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Outline 

•  Motivation and Background 

•  “Local” MHD stability with weakly 3-D equilibrium  proxy 
for micro-instability and anomalous transport 

•  “Global” MHD stability with weakly 3-D equilibrium 

•  Scenario for RMP stabilization 
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For local instabilities, local 3-D MHD equilibrium 
theory is employed 
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•  Using local 3-D equilibrium theory, shaped tokamak equilibria 
with small 3-D distortions are constructed 

•  Local 3-D equilibrium theory determined by two profiles and flux 
surface parameterization in straight-field line coordinates (CCH, 
’00)  

–  Topologically toroidal flux surfaces 
–  Axisymmetric + small 3-D distortions 

•  R(Θ), Z(Θ) ~ shaped Miller equilibria 
•   δBρ/Β0 ~ Σi  γi (qMi –Ni)/R0   

R = R(!)+ ! i
M
" cos(Mi!# Ni" )

Z = Z(!)+ ! i
i
" sin(Mi!# Ni" )
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3-D MHD equilibrium can be destabilizing to  
local (n ∞) ideal MHD modes 

•  Shielded 3-D magnetic perturbations can destabilize local 
microinstability properties and potentially enhance transport 
–  Infinite-n ideal MHD ballooning stability boundary is strongly 

perturbed by 3-D fields 
–  Most sensitive as rational surface approached 
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A = 3.17, 
κ  = 1.66	

δ  = 0.416	

Sκ  = 0.7,  
sδ = 1.37, 
drR0= -0.354 
 
γi = 10-3   
Mi = 4,5,6,…14 
Ni = 3	


Bird and CCH, NF ‘13 

~ 
dq

/d
ψ

 

~ - dp/dψ 
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3-D components modify important  
geometric coefficients 

•  Ideal ballooning stability --- balance of pressure/curvature drive 
with field line bending 
–  Normal and geodesic curvature 
–  Local shear  

•  With 3-D fields, we have modest corrections to the curvature 
vector 
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!
! =!nn̂+ !̂g
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3-D fields have a significant effect on the local shear 

•  Local shear is related to parallel currents and normal torsion 

–  3-D fields produce modest corrections to τn 

–  3-D fields produce large changes to Pfirsch-Schlüter currents 

•  With 3-D fields 
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Local shear is sensitive to resonances 

•  Contours of integrated local shear: 

 axisymmetric   Add 3-D,  q = 3.15  Add 3-D, q = 3.01 
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Stability affected by 3-D modulations to local shear  

•  Local shear contours:    a) axisymmetric          b) + 3-D, q = 3.07 
        c) + 3-D, q = 3.03       d) + 3-D, q = 3.01 

–  Eigenmodes 
resides in  
regions with 
small local  
shear 
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In 3-D equilibrium, local eigenvalues  
are field line dependent 

•  Contours of growth rate as a function of field line label and s 

–  Flux tube analysis at different field line labels 
•  Some flux tubes are more unstable than others 

–  Turbulence sees the entire surface 
•  Extension under development to model entire surface  
 Full surface GENE code  
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q = 11/3 + 0.1 
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Outline 

•  Motivation and Background 

•  “Local” MHD stability with weakly 3-D equilibrium  proxy for 
micro-instability and anomalous transport 

•  “Global” MHD stability with weakly 3-D equilibrium 

•  Scenario for RMP stabilization 
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To calculate global mode stability, local 3-D 
equilibrium is not sufficient 

•  Consider the presence of a 3-D equilibrium defined over a finite 
volume of the plasma 

•  Proper construction of 3-D equilibrium with RMP is an open topic 
–  Variety of tools employed (Turnbull, PoP ‘13) 

•  B = Bo + δB, |δB|/|B| << 1 
–  Bo  = axisymmetric equilibrium 
–   δB ~ e-iNζ = small 3-D distortion 

•  MHD equilibrium to O(δ) 

–  3-D distortion governed by marginal linear ideal MHD response  

22	
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Small 3-D distortion allows for  
a perturbation approach   

•  The ideal MHD force operator can be separated to O(δ)	


–  F0 = force operator of axisymmetric equilibrium 
–   δF ~ e-iNζ = correction to force operator due to 3-D distortion 

•  Eigenvector and eigenvalue for axisymmetric equilibrium 

•  To construct the eigenfunction for the full system, the eigenfunctions 
for the axisymmetric equilibrium can be used as a basis set 
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A perturbation approach can used to estimate the 
effect of the 3-D field on ideal MHD spectrum 

•  Inserting eigenvalue expansion into ideal MHD force operator 

–  Orthogonality properties matrix equation for coupling 
coefficients 

–  3-D field effects enter through matrix element Vmk  
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Generally, 3-D equilibrium  
distortions are destabilizing  

•  For weak coupling, ajk = δjk + O(δ), off-diagonal coupling 
coefficients 

–  Eigenfunction 

 
–  Eigenvalues 

•  Notice, for most unstable (or least stable) eigenvalue 
 ωj0

2 < ωk0
2   3-D correction term is destabilizing 
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An example spectrum demonstrates the 
destabilizing property of the 3-D distortion 

•  Academic example using prescribed 2-D spectrum and 
approximate solution for Vjk with δB ~ e-i3ζ (N = 3) 

26	


0 

0.2 

0.4 

0.6 

0.8 

1 

1.2 

1.4 

1 2 3 4 5 6 7 8 9 10 11 12 13 14 

M
H

D
 G

ro
w

th
 ra

te
 (A

. U
.)!

Toroidal mode number = n!

Growth rate vs. n!

2DEquilibrium 
3DEquilibrium 



Hegna, Columbia Univ, 5/2/14	

University of Wisconsin-Madison	


The linear eigenfunctions have 3-D structure 

•  Linear eigenfunctions have coupled 3-D harmonics 

–  For example with an N = 3 equilibrium distortion 
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Matrix elements can be calculated using perturbed 
3-D equilibrium 

•  δF(ξ) due to 3-D equilibrium	


•  Matrix elements can be calculated 
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For 3-D equilibrium with shielded RMP fields, an 
approximate matrix element can be calculated 

•  For applications to RMP, consider shielded resonant component 
response  persistence of eddy currents at rational surfaces 

–  In this limit, dominant contribution to the matrix element 

 
–  Characteristic amplitudes V/ω0

2 ∼ 0.3 
–  Proper calculation requires knowledge of 3-D distortion 

including plasma response (M3D, NIMROD) and ideal MHD 
eigenfunction from associated axisymmetric equilibrium 
(ELITE) 29	
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3-D equilibria affects local MHD stability and global 
MHD stability in different ways 

•  Effects of a weakly 3-D equilibrium on MHD stability properties: 
–  ‘Local’ mode stability 

•  Order unity changes to marginal profiles 
•  Generally destabilizing 
•  Sensitivity to low-order rational surfaces 

–  ‘Global’ mode stability 
•  Destabilizing 
•  Modest changes to growth rates  
•  Not as sensitive to variations in profiles 
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Outline 

•  Motivation and Background 

•  “Local” MHD stability with weakly 3-D equilibrium  proxy for 
micro-instability and anomalous transport 

•  “Global” MHD stability with weakly 3-D equilibrium 

•  Scenario for RMP stabilization 
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Stability calculations suggest a possible scenario 
for ELM suppression from RMP 
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•  Recall, RMP suppresses radial propagation of steep pedestal 
gradient 
–  Sensitive to q  

•  Hypothesis:   
Necessary condition for 
ELM suppression is a  
near resonant J||PS 
at pedestal top  O(1)  
corrections to local shear 

–  Enhanced transport at pedestal top  flattens pressure 
gradient, halts the pedestal, keeps profile from exciting 
intermediate-n MHD modes 

–  3-D effects alter peeling-ballooning stability, but not 
significantly enough to appreciably alter stability threshold 
  

No RMP 
Icoil = 4.0 kA 
Icoil = 6.3 kA 
	

	

	

	

Evans et 
al NF ‘08 
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Suppression of turbulence is observed with ELM 
suppression 

•  From BES measurements, density 
fluctuation reductions correspond to ELM 
suppression windows in q 
With ELM suppression: 
–  For 0.86 < ρ < 0.96, large fluctuation 

at ELM suppression initiation, 
subsequent drop in amplitude 

–  Modest changes to fluctuations in 
pedestal ρ ~ 0.98 
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McKee et al, 
NF ‘13	
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Initial analysis of near resonant Pfirsch-Schluter 
currents rely on M3D-C1 analysis 

•  Sequence of equilibria similar to shot 126006  
–  Courtesy N. Ferraro, 3-D response constructed using M3D-C1 
–  Track locations of low order rational surfaces near pedestal 
–  Use local 3-D equilibrium theory to construct local shear 

properties 
–  Track where destabilizing 3D effects are strongest and how 

they move with q95. 
»  dp/dψ, dq/dψ roughly stay the 

same during q95 scan 
» Rotation present  shielding 

physics operative 
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Rational surface movement during scan suggests 
possible suppression windows 
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•  Applied N = 3 B-field with broad range of m 
•  3 ranges of q95  
where lower order  
Surface goes  
through ψn ~ 0.97 

–  q95 ~ 3.8-3.9 
–  q95 ~ 3.5-3.6 
–  q95 ~ 3.2-3.3 
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Geometric coefficients monitered during scan 

•  Example for case with large 3-D modulations of local shear 
near pedestal top 

–  Initial conclusion --- applied 3-D fields on DIII-D are big 
enough to produce interesting changes to geometry 

•  Note: not every resonant surface has a large variation in 
local shear 36	




Hegna, Columbia Univ, 5/2/14	

University of Wisconsin-Madison	


Future work: stability properties of 3-D equilibria 

•  Initial work has identified cases with interesting 3-D 
deformations of flux surfaces 

•  Infinite-n ballooning stability boundaries  quantify the 3-D 
effect 

•  Gyrokinetic simulations with GENE  
–  Flux tubes 
–  Full surface  
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Summary 

•  3-D deformations of the magnetic flux surface shape can have 
important effect on MHD stability and transport 
–  Effects are purely geometric  not reliant on any particular 

physics model  
•  3-D deformations can produce O(1) changes to local MHD 

stability boundaries, sensitive to q resonanses 
–  Indicates applied B-fields can directly affect microinstability/

anomalous transport 
•  3-D deformations produce modest changes to global MHD 

modes’ growth rate spectrum 
•  Suggests a possible scenario for RMP induced ELM 

suppression 
–  Consistent with sensitivity to q95 and collisionality 

•  Beginning analyses for DIII-D cases indicate 3-D effects are big 
enough to matter 38	



