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Goals and Needs of a Fusion Reactor 

Large nTτE Need high Te, Ti 

Good confinement (τE) 
To have high fusion gain  

Q = Pfus/(Pinput-Pα) 

Fully non-inductive conditions 
For continuous operation 

(no transient Johm) 

High pressure (βN) For large Jboot, low Pinput 

Long stable plasmas 
Avoid disruptions, loss of 

confinement 
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How Do We Project Present Experiments to 
Future Machines? 

•  Produce demonstrations of relevant conditions in present machines 

•  Extrapolate to conditions not presently attainable 

PRESENT FUTURE 

EXPERIMENT -  Plasmas on 1 machine 
-  Multi-machine campaigns 

-  Scaling laws 

MODELS -  Benchmark 
-  Validation 

- Predictive capability 
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PRESENT FUTURE 

EXPERIMENT -  Plasmas on 1 machine 
-  Multi-machine campaigns 

-  Scaling laws 

MODELS -  Benchmark 
-  Validation 

- Predictive capability 

How Do We Project Present Experiments to 
Future Machines? 

•  Produce demonstrations of relevant conditions in present machines 

•  Extrapolate to conditions not presently attainable 
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•  Ideal kinks, RWMs ! large βN and rotation collapses, disruptions 

•  Tearing (resistive) instabilities ! loss of confinement, disruptions 

•  High frequency modes (fishbones, TAEs...) ! loss of confinement, 

triggering of other modes 

One of the Issues for All the Present Plasmas is 
Duration at Peak Performance 

MHD instabilities cause pressure and rotation collapses, disruptions 
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* Brennan PoP 2007, Turco PoP 2012  

A rotating kink-resonant n=1 field is applied with a set of “internal 
coils” (I-coils), at f=10 Hz or f=20 Hz ! rotation frequency of the RWM 

MHD spectroscopy*: probe the stable side of the RWM 

Measure the Approach to Instability: 
MHD Spectroscopy EXP 

•  The plasma response amplitude increases  
close to a stability boundary 

 
–  Used to probe the proximity to an ideal stability  

limit (high βN pressure limit, low q current limit) 
 
–  Resistive stability is strongly correlated to ideal  

limits*(acquire information on tearing modes) 

Expand the analysis and modeling space 
to the “stable” side of the modes 
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Rwms as Kink Limit Measured and Modelled 
With Plasma Response 

•  The ideal kink instability, with a realistic (non-ideal) wall model,  
is described by the RWM branch of the dispersion relation 
–  ! slow growth rate of the order of τwall 

 
•  MHD spectroscopy measures the approach to this stability boundary 
 
•  The RWM is influenced by 

–  Pressure and current profile gradients (ideal MHD) 
–  Resonances between the plasma rotation and the thermal particles 

drift frequencies 
–  Non-resonant contributions from fast-particles (NBI ions in DIII-D) 

MOD 

•  In DIII-D, RWMs 
–  Cause rotation and βN collapses in the high-qmin, high-βN SS plasmas 
–  Provide the hard disruptive limit in the q<2 scenarios 
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Drift Kinetic Effects Are Needed to 
Describe the Experimental Observations 

•  RWMs do not usually appear in fast-rotating, low qmin plasmas ! kinetic 
damping of the RWM [Hu et al, PRL2004] 

 
 
 
 
 

•  The rotation, the thermal and fast-ion dependences may extrapolate 
unfavourably to machines with low external torque and lower fraction of 
fast beam-generated ions, such as ITER 

γτW = −
∂Wno−wall

∂Wideal−wall

γτW = −
∂Wno−wall +∂Wkinetic

∂Wideal−wall +∂Wkinetic

Ideal MHD RWM dispersion relation Kinetic damping physics  

MOD 
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MARS-K Model is Being Validated to Predict 
the Stability in Unexplored Regimes	


The model includes 
-  resistive DIII-D wall geometry 
-  fast-NBI ions with a Maxwellian slowing down distribution function in v  

*Y. Liu et al, Phys. Plasmas 15, 112503 (2008) 

MOD 

ξ (γ + iΩ) = v+ (ξ ⋅∇Ω)R

ρ(γ + iΩ)v = −∇⋅ p+ j ×B+ J × !B− ρ(Ω× v+ v ⋅∇Ω)

(γ + iΩ) !B =∇× (v×B)+ ( !B ⋅∇Ω)R

(γ + iΩ)p = −v ⋅∇P

j =∇× !B

p = pI + p// + p⊥ Mv2 f dΓ∫

Plasma displacement 

Momentum (with rotation) 

Faraday’s law 

Perturbed pressure 

Ampère’s 

Drift kinetic pressure tensors " 

Eigenvalue code, modified to solve for the response to an inhomogeneous 
forcing function ! External field from the I-coils  
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DIII-D is Tasked to Provide Demonstration 
Plasmas for ITER and FNSF 

Hybrid 155543 IBS 157857  RWM 146540 

EXP 
Experiments " platform to study the phenomena that the models describe 

SCENARIO: a type of plasma, and plasma evolution, that has specific 
requirements for 

-  plasma shape, q95, Q, torque, collisionality, Te/Ti, etc 

DN 
q95~5-6 
βN~3-4 

LSN 
q95~3 
βN~1.8 

LSN 
q95~4-5 

βN~1.5-2.5 
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I Am Going to Discuss the Work Towards These 
Scenarios: 

ITER 

ITER Baseline Scenario (IBS) 
Q=10, 15 MA (q95~3), q0<1, 

Pfus=500 MW, LSN shape 

Steady-State 
Q=5, 9 MA (q95~5), LSN 

shape, fNI=1 

FNSF* 
Steady-state 

Q < 5, 6.7 MA, qmin>1, DN, 
high neutron fluence  

*Fusion Nuclear Science Facility for FDF (future US machine) ! the mission is 
to develop fusion blankets and test materials 
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IBS: MHD Stability Below The No-wall Limit, At 
Zero Torque 

ITER 

ITER Baseline Scenario (IBS) 
Q=10, 15 MA (q95~3), q0<1, 

Pfus=500 MW, LSN shape 

Steady-State 
Q=5, 9 MA (q95~5), LSN 

shape, fNI=1 

FNSF* 
Steady-state 

Q < 5, 6.7 MA, qmin>1, DN, 
high neutron fluence  

" βN~1.8-2.2 
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[IBS] Stable Solution Found At 
Moderate to High Torque 

•  DIII-D IBS demonstration discharges match 
-  plasma shape (LSN)  
-  q95 = 3.1 

(ITER Ip=15 MA, Bt=5.3 T, R=6.2 m) 
-  Q = 10 " βN=1.8, H98=1 at q95=3 

 
DIII-D can match the predicted torque ! 0-0.7 Nm 
 
•  Not matching with the present heating systems:  

-  Te/Ti ~ 0.6-0.9 at ρ=0 
-  collisionality 

EXP 

Solution not very 
reproducible 
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•  Narrow operating point found at ≥1 Nm 
•  Operation at 0 Nm remains elusive 
•  Modes appear after several τE at constant βN 

Low rotation ! more mode coupling, less wall 
stabilization 
 
Rotation ! transport ! Te ! indirectly impacts Johm 
! current profile more unstable? 

EXP [IBS] At Low Torque Life is Even Harder 

Ideal no-wall limit βNW~2.8-3.1 
Ideal with-wall limit βWW~3.2-3.5 
IBS constant βN~1.8-2.2 

Non-ideal effects ! current profile, rotation 

Operating on a marginal point 
! sensitive to small perturbations 
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MHD Spectroscopy Can Measure the 
Proximity to A Stability Limit EXP 

Rotation at ρ~0.7 (krad/s) 
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Response amplitude increase 
βN~1.8-1.9 

βN~1.9-2.1 
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MHD Spectroscopy Can Measure the 
Proximity to A Stability Limit 

Phase jump 

EXP 

Rotation at ρ~0.7 (krad/s) 
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Response amplitude increase 

Phase jump at ~12-15 krad/s 
! Typical of no-wall limit crossing 

Non-ideal effects "! Lower limits 

βN~1.8-1.9 

βN~1.9-2.1 
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MHD Spectroscopy Can Measure the 
Proximity to A Stability Limit EXP 

βN/βlim 

Plasma response amplitude (G/kA) 

Ro
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t ρ=0.7 (kra
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/s) 
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- At “moderate” rotation, the trends 
are consistent with the ideal model 
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MHD Spectroscopy Can Measure the 
Proximity to A Stability Limit EXP 
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- At “moderate” rotation, the trends 
are consistent with the ideal model 

- At higher rotation the response is 
off trend ! kinetic damping? 
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MHD Spectroscopy Can Measure the 
Proximity to A Stability Limit EXP 

βN/βlim 

Plasma response amplitude (G/kA) 

Understand instability at low torque  

Ideal MHD likely not sufficient 
to explain the trends  

Ro
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n a

t ρ=0.7 (kra
d

/s) 

0.55 0.6 0.650.5

1

1.5
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2.5
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- At “moderate” rotation, the trends 
are consistent with the ideal model 

- At higher rotation the response is 
off trend ! kinetic damping? 

Modeling of rotation and 
kinetic damping effects 

- At very low rotation, with ECH, 
higher response ! collisionality 
effect? 
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The Path to High βn is A Good Platform to Validate 
Models 

ITER 

ITER Baseline Scenario (IBS) 
Q=10, 15 MA (q95~3), q0<1, 

Pfus=500 MW, LSN shape 

Steady-State 
Q=5, 9 MA (q95~5), LSN 

shape, fNI=1 

FNSF* 
Steady-state 

Q < 5, 6.7 MA, qmin>1, high 
neutron fluence  

Higher βN 
Higher q95 
RWM plasma 
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Experiments: Pressure (βn) Scan to Cross the 
No-wall βn Limit 

ELMing H-modes, moderate βN, LSN shape, 
q95~4-5, qmin>1 

EXP 

Increase the pressure with NBI power ! Measure the plasma response 
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βn Scan: It’s Crucial to Assess the Validity of 
the Modeling Results 
•  Rotation has an impact on the 

response amplitude 
 
•  The rotation is not constant 

across the βN values 

1 

2 

3 4 

5&6 

" Some of the variations may be due 
to the rotation! 

" Understand the validity of the results 
(sensitivity to other variables) 

MOD 
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•  Need to isolate the effect of βN ! 
keep rotation fixed 

 
•  ...for each βN case: 

Sensitivity study: 

Ω# 
βN$ 1 2 3 4 5 6 

1.18 

1.43 

1.67 

1.8 

2.05 

2.5 

1 

2 

3 4 

5&6 

fixed βN 

fixe
d

 Ω
 

Evaluated 36 cases: 6 rotation profiles for each of the 6 βN points 

MOD βn Scan: It’s Crucial to Assess the Validity of 
the Modeling Results 
•  Rotation has an impact on the 

response amplitude 
 
•  The rotation is not constant 

across the βN values 
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βn Scan: MHD-only Model Does Not Reproduce 
Approach to the No-wall βn Limit 

•  Previous modelling* showed the 
MHD model without rotation has a 
pole at the no-wall limit 

*Lanctot, PoP2010 

MOD 
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βn Scan: Drift Kinetic Model Reproduces 
Approach to the No-wall βn Limit Correctly 

•  Previous modelling* showed the MHD 
model without rotation has a pole at 
the no-wall limit 

 
•  The pole is eliminated with the full 

kinetic model (thermal + fast ions) 
 
•  Without fast-ion damping the pole 

reappears ! 45% higher than expt 
 
•  The phase shift is still overestimated 

above the no-wall limit 

*Lanctot, PoP2010 

MOD 

The sensitivity study 
-  Shows how much of the trend is 

*not* due to the βN 
-  Provides confidence in the results 
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*Lanctot, PoP2010 

MOD 
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Phase jump 

ITER: very small fast-ion β from NBI 
"  will the plasmas be (45%) more 

unstable? 
"  Will the fast α-particles be 

enough to stabilize them?	


•  Previous modelling* showed the MHD 
model without rotation has a pole at 
the no-wall limit 

 
•  The pole is eliminated with the full 

kinetic model (thermal + fast ions) 
 
•  Without fast-ion damping the pole 

reappears ! 45% higher than expt 
 
•  The phase shift is still overestimated 

above the no-wall limit 

βn Scan: Drift Kinetic Model Reproduces 
Approach to the No-wall βn Limit Correctly 
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ITER 

ITER Baseline Scenario (IBS) 
Q=10, 15 MA (q95~3), q0<1, 

Pfus=500 MW, LSN shape 

Steady-State 
Q=5, 9 MA (q95~5), LSN 

shape, fNI=1 

FNSF 
Steady-state 

Q < 5, 6.7 MA, qmin>1, high 
neutron fluence  

βN~3-4 



NATIONAL FUSION FACILITY
S A N  D I E G O

DIII–D

JTOT = 

JNBI,ECH,LH JBS JOHM 

Steady-state: Fully Non-inductive Current Drive, Where the Plasma 
Current and Pressure Have Stopped Evolving (Reached A Stable State) 

•  Current must be composed of bootstrap and externally driven 
NBI, ECH... 

•  Large Jboot is associated to high βN 

•  MHD stability can be an issue even 
at high torque  

•  Standard high-βN, steady-state scenario ! high qmin~1.5-2.5, 
zero/reversed shear, broad profiles with off-axis CD 

...or not! 
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What is a hybrid? ! Long duration, high confinement H-mode 
! More stable to 2/1 tearing modes 

Current density 

q 
q=1 

q=2 

ρ 

Final J independent 
from sources  

q relaxes to “hybrid” 
state – qmin≥1 

3/2 TM 

SS High-qmin 

SS Hybrid 

144476, 158592 

Alternative Approach: the Hybrid Scenario 
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All external current driven 
in the plasma centre 

No alignment issues 
Most efficient CD 

•  Benign m=3/n=2 or m=4/n=3 mode causes “flux pumping” 
out of ρ~0.35 

•  q naturally stays above 1 ! no sawteeth 

What is a hybrid? ! Long duration, high confinement H-mode 
! More stable to 2/1 tearing modes 

Current density 

q 
q=1 

q=2 

ρ 

Final J independent 
from sources  

q relaxes to “hybrid” 
state – qmin≥1 

3/2 TM 

SS High-qmin 

SS Hybrid 

144476, 158592 

Alternative Approach: the Hybrid Scenario 
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Current density 

q 
q=1 

q=2 

All external current driven 
in the plasma centre 

No alignment issues 
Most efficient CD 

Ideal MHD with-wall limits are βlimit≥4.5 

What is a hybrid? ! Long duration, high confinement H-mode 
! More stable to 2/1 tearing modes 

Final J independent 
from sources  

3/2 TM 

SS High-qmin 

SS Hybrid 

144476, 158592 

q relaxes to “hybrid” 
state – qmin≥1 

Alternative Approach: the Hybrid Scenario 
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Hybrid Plasmas Reach Fully NI Conditions 
and βn=3.6 for ~2 τr 

Double null plasma shape 

155541, 155542, 155543 

Time (ms) 

βN 

H98y2 

PNBI (MW) 

PECH (MW) 

Density (1019 m-3) 

Vsurf (mV) 

τR 

•  Stable to the 2/1 TM at βN~3.6 
•  Loop voltage ~ 0 for ~2 τR 
•  Limited by NBI pulse duration 

EXP 
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MHD Stability is the Main Challenge for 
High-βn Hybrids 

•  2/1 tearing modes arise on βN>3.5 flattop 
•  They degrade the confinement significantly ! loss of 20-50% βN 

Time (ms) 

βN 

n=1 amplitude (G) 
(n=2 is good!) 

Ip 

154734, 154735, 154736 

EXP 
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Modelling of the approach to the ideal limit: 

•  The tearing index Δ’ increases sharply at the ideal wall limit 

Tearing Limits Are Strongly Correlated 
With the Ideal With-wall Limit MOD 
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•  The tearing index Δ’ increases sharply at the ideal wall limit 

Operate with very large, very sensitive Δ’? •  High βN operation  

One solution is to 
increase the ideal limit: 
-  broaden J and p 
-  change the plasma 

shape 

Modelling of the approach to the ideal limit: 

MOD Tearing Limits Are Strongly Correlated 
With the Ideal With-wall Limit 
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Push the Ideal Limit Up to Improve 
Tearing Stability Conditions 

*Turnbull PRL 1995 

Previous modeling* provides an example of extreme 
conditions, which realize very high ideal stability limits 

Modeling plasma shape 

Present experimental shape 

Conducting wall 

Limiter 

MOD 
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 New modelling to decouple the effects: 
•  Experimental profiles + larger shape 
•  Experimental shape + broad profiles 

Each makes βlim % +60% 

With-wall βN limit 

DCON stability limits 

Large 
shape 

Broad 
profiles 

EXPERIMENT 

How Much of the Increase is Due to 
the J and p Profiles? MOD 
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 New modelling to decouple the effects: 
•  Experimental profiles + larger shape 
•  Experimental shape + broad profiles 

Each makes βlim % +60% 

DCON stability limits 

Large 
shape 

Broad 
profiles 

3 

4 

4.5 

5 

3.5 

2.4 2.6 2.8 3.0 3.2 3.4 
pressure peaking factor 

DCON ideal limits 

βN limit 

EXPERIMENT 

With-wall βN limit 

 Pressure peaking factor alone: 
•  Ideal βlim % +45% 

MOD 
How Much of the Increase is Due to 
the J and p Profiles? 
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 New modelling to decouple the effects: 
•  Experimental profiles + larger shape 
•  Experimental shape + broad profiles 

Each makes βlim % +60% 

DCON stability limits 

Large 
shape 

Broad 
profiles 

3 

4 

4.5 

5 

3.5 

2.4 2.6 2.8 3.0 3.2 3.4 
pressure peaking factor 

-20 

0 

10 

20 

-10 

(Δ’>0 necessary but not sufficient for instability) 

Δ’ m=2 

βN limit 

EXPERIMENT 

With-wall βN limit 

 Pressure peaking factor alone: 
•  Ideal βlim % +45% 

•  Tearing stability increases m=2 

MOD 
How Much of the Increase is Due to 
the J and p Profiles? 
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Use the Modelling Results to Design More 
Stable Plasmas 

OFF-axis NBI to broaden the hybrid current and 
pressure profiles 
(1 neutral beam line is tilted " ~4 MW off-axis 
power) 

Courtesy of JM Park (IAEA 2013) 

EXP 
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Apply this Concept to the qmin~1  
Hybrid Plasmas EXP 

Despite the anomalous current diffusion in 
hybrids, 4 MM of off-axis NBI broaden J and p 
(slightly...) 
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Achieved βN 

Li
m

it 
β N

 

OFF-axis 
ON-axis 

•  The with-wall βN limits of the OFF-axis cases are ~10% higher 

Plasmas with Off-axis NBI Have Similar Ideal 
Limits as the On-axis Cases  EXP 
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The Plasma Shape Can Be Optimized to  
Yield Higher Ideal Limits MOD 
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The modelling will guide the design of the next hybrid experiment 

Increase the minor radius 

Decrease the inner and outer gaps 

Increase the degree of wall stabilization 
(within the new wall geometry limits) 

 
Kink structure is localised on the LFS 

Does the inner gap matter? 
SS hybrid 155543 

R (m) 

F. Carpanese, Politecnico di Milano 
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Wider Shape, with Larger Squareness, will be 
Proposed for the Next Hybrid Experiments MOD 
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Higher order changes ! squareness affects the stability  

SS hybrid 155543 

The LFS wall stabilization (outer gap) is stronger than the HFS (inner gap) 

(no-wall limits) 

(ideal-wall limits) 
+40% 

+9% 
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Inner, outer gap (cm) 

Ideal-wall limits 
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F. Carpanese, Politecnico di Milano 
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All the High-βn Plasmas Have High NBI 
Torque 

To eliminate perturbations due to equilibrium and profile details, the model uses: 
•  A fixed equilibrium and ne, Te, ni, PNBI, etc, from a DIII-D plasma 
•  A self-similar rotation profile series 

-  Experiment ! decrease the rotation at fixed βN, q95 
-  Model ! capture the rotation effects to extrapolate what we can’t do 

MOD 
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What happens at low rotation, high βN? 

Modelled profiles 

!
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Comparison with drift frequencies 
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•  Broad peak in the response at 20-25 
km/s (~1% of the Alfvén velocity) 

 
•  Below the no-wall limit (IBS) the trend 

is increasing 

Rotation Effects Above the No-wall βn Limit EXP 

Rotation at ρ~0.6 (krad/s) 
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MHD spectroscopy 
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•  With thermal and fast ions the 
amplitude results are in the ball-park 

 
•  ...but the phase is underestimated by 

~25% 
 
•  If the fast-ions damping is neglected, 

the results diverge (more) from the 
measurements 

Rotation Scan: MARS-K Reproduces the 
Response Amplitude with Fast-ions MOD 

Rotation at ρ~0.6 (krad/s) 
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MHD spectroscopy 
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No Model is Perfect — the Way Forward 

•  Zero collisionality ! New MARS-Q: energy dependent collisionality operator  
•  The present version of MARS-K assumes a Maxwellian fast-ion distribution 

(experimental profile in ρ, but no v//, vperp dependence) 
 
•   Neutral beam ions in DIII-D are strongly anisotropic: 

 New MARS-Q version with more realistic distribution 
! resolve the rotation scan discrepancy? 

Experimental beam-ion distribution (NUBEAM) 

Identify what physics is not present and could be relevant:  
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Discussion and Conclusions 

•  The development of viable scenarios for ITER and FNSF is based 
on experiments and modelling efforts 

•  The ITER Baseline Scenario: the zero torque regime operates  
on a marginal stability point 

•  MHD spectroscopy can measure the approach to a stability limit 
–  Warning tool for disruption avoidance? 

•  The MARS-K model reproduces the plasma response 
measurements up to the no-wall limit 
–  Fast NBI-ion damping is crucial above 90% of the limit 

•  The steady-state hybrid scenario: attractive solution for ITER and 
FNSF, the ideal and tearing limits can be increased 

•  The rotation dependence at high βN is challenging 
–  New version of MARS-K includes more physics 


