Modelling and Experimenting with ITER: the MHD Challenge

by F. Turco¹

with J.M. Hanson¹, A.D. Turnbull², G.A. Navratil¹, F. Carpanese³, C. Paz-Soldan², C.C. Petty², T.C. Luce², W.M. Solomon⁴, J.R. Ferron², C.T. Holcomb⁵, T.N. Carlstrom²

¹Columbia University ²General Atomics ³Politecnico di Milano-General Atomics ⁴PPPL ⁵Lawrence Livermore National Laboratory

New York,

January 23rd, 2015

Contents

- Introduction to DIII-D development of ITER and FNSF scenarios
- Making progress by integrating experiments and modelling
 - Understanding and projecting MHD stability limits
 - MHD spectroscopy to measure the approach to a limit
- The ITER Baseline Scenario: moderate β_N , zero torque
- The path to high β_N and steady-state conditions
 - Modeling the approach to the no-wall limit with non-ideal effects (MARS-K)
- The steady-state hybrid scenario: high β_N , high torque
 - Enhance the ideal and resistive limits with profiles and shape changes
- Low torque at high β_N
 - Validation of MARS-K description of the rotation effects
- Discussion

Goals and Needs of a Fusion Reactor

Large $nT\tau_E$	Need high T _e , T _i
Good confinement ($\tau_{\rm E}$)	To have high fusion gain Q = P _{fus} /(P _{input} -P _α)
Fully non-inductive conditions	For continuous operation (no transient J _{ohm})
High pressure (β_N)	For large J _{boot} , low P _{input}
Long stable plasmas	Avoid disruptions, loss of confinement

How Do We Project Present Experiments to Future Machines?

- Produce demonstrations of relevant conditions in present machines
- Extrapolate to conditions not presently attainable

	PRESENT	PRESENT FUTURE	
EXPERIMENT	 Plasmas on 1 machine Multi-machine campaigns 	- Scaling laws	
MODELS	- Benchmark - Validation	- Predictive capability	

How Do We Project Present Experiments to Future Machines?

- Produce demonstrations of relevant conditions in present machines
- Extrapolate to conditions not presently attainable

	PRESENT	ESENT FUTURE	
EXPERIMENT	 Plasmas on 1 machine Multi-machine campaigns 	- Scaling laws	
MODELS	- Benchmark - Validation	- Predictive capability	

One of the Issues for All the Present Plasmas is Duration at Peak Performance

MHD instabilities cause pressure and rotation collapses, disruptions

- Ideal kinks, RWMs \rightarrow large β_N and rotation collapses, disruptions
- Tearing (resistive) instabilities \rightarrow loss of confinement, disruptions
- High frequency modes (fishbones, TAEs...) → loss of confinement,

triggering of other modes

Measure the Approach to Instability: MHD Spectroscopy

EXP

MHD spectroscopy*: probe the stable side of the RWM

A rotating kink-resonant n=1 field is applied with a set of "internal coils" (I-coils), at f=10 Hz or f=20 Hz \leftarrow rotation frequency of the RWM

- The plasma response amplitude increases close to a stability boundary
 - Used to probe the proximity to an ideal stability limit (high β_N pressure limit, low q current limit)
 - Resistive stability is strongly correlated to ideal limits*(acquire information on tearing modes)

Expand the analysis and modeling space to the "stable" side of the modes

* Reimerdes PRL 2004 * Brennan PoP 2007, Turco PoP 2012

Rwms as Kink Limit Measured and Modelled With Plasma Response

- The ideal kink instability, with a realistic (non-ideal) wall model, is described by the RWM branch of the dispersion relation
 - \rightarrow slow growth rate of the order of τ_{wall}
- MHD spectroscopy measures the approach to this stability boundary
- The RWM is influenced by
 - Pressure and current profile gradients (ideal MHD)
 - Resonances between the plasma rotation and the thermal particles drift frequencies
 - Non-resonant contributions from fast-particles (NBI ions in DIII-D)
 - In DIII-D, RWMs
 - Cause rotation and β_N collapses in the high- q_{min} , high- β_N SS plasmas
 - Provide the hard disruptive limit in the q<2 scenarios

Drift Kinetic Effects Are Needed to Describe the Experimental Observations

RWMs do not usually appear in fast-rotating, low q_{min} plasmas → kinetic damping of the RWM [Hu et al, PRL2004]

$$\gamma \tau_{W} = -\frac{\partial W_{no-wall}}{\partial W_{ideal-wall}} \qquad \qquad \gamma \tau_{W} = -\frac{\partial W_{no-wall} + \partial W_{kinetic}}{\partial W_{ideal-wall} + \partial W_{kinetic}}$$

Ideal MHD RWM dispersion relation

Kinetic damping physics

 The rotation, the thermal and fast-ion dependences may extrapolate unfavourably to machines with low external torque and lower fraction of fast beam-generated ions, such as ITER

MARS-K Model is Being Validated to Predict the Stability in Unexplored Regimes

Eigenvalue code, modified to solve for the response to an inhomogeneous forcing function \leftarrow External field from the I-coils

$$\begin{split} \xi(\gamma + i\Omega) &= v + (\xi \cdot \nabla \Omega)R & \text{Plasma displacement} \\ \rho(\gamma + i\Omega)v &= -\nabla \cdot p + j \times B + J \times \tilde{B} - \rho(\Omega \times v + v \cdot \nabla \Omega) & \text{Momentum (with rotation)} \\ (\gamma + i\Omega)\tilde{B} &= \nabla \times (v \times B) + (\tilde{B} \cdot \nabla \Omega)R & \text{Faraday's law} \\ j &= \nabla \times \tilde{B} & \text{Ampère's} \\ (\gamma + i\Omega)p &= -v \cdot \nabla P & \text{Perturbed pressure} \\ p &= pI + p_{//} + p_{\perp} & \leftarrow \int Mv^2 f \, d\Gamma & \text{Drift kinetic pressure tensors} \end{split}$$

The model includes

- resistive DIII-D wall geometry
- fast-NBI ions with a Maxwellian slowing down distribution function in \underline{v}

*Y. Liu et al, Phys. Plasmas 15, 112503 (2008)

DIII-D is Tasked to Provide Demonstration Plasmas for ITER and FNSF

EXP

<u>Experiments</u> \rightarrow platform to study the phenomena that the <u>models</u> describe

SCENARIO: a type of plasma, and plasma evolution, that has specific requirements for

I Am Going to Discuss the Work Towards These Scenarios:

ITER	ITER Baseline Scenario (IBS) Q=10, 15 MA (q ₉₅ ~3), q ₀ <1, P _{fus} =500 MW, LSN shape
	Steady-State Q=5, 9 MA (q ₉₅ ~5), LSN shape, f _{NI} =1
FNSF*	Steady-state Q < 5, 6.7 MA, q _{min} >1, DN, high neutron fluence

*Fusion Nuclear Science Facility for FDF (future US machine) → the mission is to develop fusion blankets and test materials

IBS: MHD Stability Below The No-wall Limit, At Zero Torque

[BS] Stable Solution Found At Moderate to High Torque

SAN DIEGO

[IBS] At Low Torque Life is Even Harder

- Narrow operating point found at ≥ 1 Nm
- Operation at 0 Nm remains elusive
- Modes appear after several τ_{E} at constant β_{N}

Operating on a marginal point

 \rightarrow sensitive to small perturbations

Ideal no-wall limit β_{NW} ~2.8-3.1 Ideal with-wall limit β_{WW} ~3.2-3.5 IBS constant β_N ~1.8-2.2

Non-ideal effects \rightarrow current profile, rotation

<u>Low rotation</u> \rightarrow more mode coupling, less wall stabilization

<u>Rotation</u> \rightarrow transport \rightarrow T_e \rightarrow indirectly impacts J_{ohm} \rightarrow current profile more unstable?

Modeling of rotation and kinetic damping effects

-> Understand instability at low torque

The Path to High β_{n} is A Good Platform to Validate Models

Experiments: Pressure (β_n) Scan to Cross the No-wall β_n Limit

EXP

Increase the pressure with NBI power \rightarrow Measure the plasma response

β_n Scan: It's Crucial to Assess the Validity of the Modeling Results

- Rotation has an impact on the response amplitude
- The rotation is not constant across the β_{N} values

- → Some of the variations may be due to the rotation!
- → Understand the validity of the results (sensitivity to other variables)

β_n Scan: It's Crucial to Assess the Validity of the Modeling Results

MOD

- Rotation has an impact on the response amplitude
- The rotation is not constant across the β_{N} values

- Need to isolate the effect of $\beta_{\text{N}} \rightarrow$ keep rotation fixed
- ...for each β_N case:
 Sensitivity study:

Evaluated 36 cases: 6 rotation profiles for each of the 6 β_{N} points

β_n Scan: MHD-only Model Does Not Reproduce Approach to the No-wall β_n Limit

MOD

 Previous modelling* showed the MHD model without rotation has a pole at the no-wall limit

β_n Scan: Drift Kinetic Model Reproduces Approach to the No-wall β_n Limit Correctly

- Previous modelling* showed the MHD model without rotation has a pole at the no-wall limit
- The pole is eliminated with the full kinetic model (thermal + fast ions)
- Without fast-ion damping the pole reappears → 45% higher than expt
- The phase shift is still overestimated above the no-wall limit

The sensitivity study

- Shows how much of the trend is *not* due to the β_N
- Provides confidence in the results

β_n Scan: Drift Kinetic Model Reproduces Approach to the No-wall β_n Limit Correctly

- Previous modelling* showed the MHD model without rotation has a pole at the no-wall limit
- The pole is eliminated with the full kinetic model (thermal + fast ions)
- Without fast-ion damping the pole reappears → 45% higher than expt
- The phase shift is still overestimated above the no-wall limit

ITER: very small fast-ion β from NBI

- → will the plasmas be (45%) more unstable?
- → Will the fast <u>α-particles</u> be enough to stabilize them?

*Lanctot, PoP2010

ITED		
IIEK	Steady-State Q=5, 9 MA (q ₉₅ ~5), LSN shape, f _{NI} =1	β _N ~3-4
FNSF	Steady-state Q < 5, 6.7 MA, q _{min} >1, high neutron fluence	

Steady-state: Fully Non-inductive Current Drive, Where the Plasma Current and Pressure Have Stopped Evolving (Reached A Stable State)

- Current must be composed of bootstrap and externally driven
 NBI, ECH...
- Large J_{boot} is associated to high β_{N}

 MHD stability can be an issue even at high torque

• Standard high- β_N , steady-state scenario \rightarrow high $\underline{q_{min}} \sim 1.5 - 2.5$, zero/reversed shear, broad profiles with <u>off-axis CD</u>

...or not!

Alternative Approach: the Hybrid Scenario

What is a hybrid? \rightarrow Long duration, high confinement H-mode \rightarrow More stable to 2/1 tearing modes

Alternative Approach: the Hybrid Scenario

Alternative Approach: the Hybrid Scenario

Hybrid Plasmas Reach Fully NI Conditions and β_n =3.6 for ~2 τ_r

MHD Stability is the Main Challenge for High- β_n Hybrids

- 2/1 tearing modes arise on β_N >3.5 flattop
- They degrade the confinement significantly \rightarrow loss of 20-50% β_N

Tearing Limits Are Strongly Correlated With the Ideal With-wall Limit

- MOD
- The tearing index Δ ' increases sharply at the ideal wall limit

Tearing Limits Are Strongly Correlated With the Ideal With-wall Limit

- The tearing index Δ' increases sharply at the ideal wall limit
- High β_N operation $\langle ::: \rangle$ Operate with very large, very sensitive Δ '?

Push the Ideal Limit Up to Improve Tearing Stability Conditions

How Much of the Increase is Due to the J and p Profiles?

How Much of the Increase is Due to the J and p Profiles?

How Much of the Increase is Due to the J and p Profiles?

Use the Modelling Results to Design More Stable Plasmas

EXP

OFF-axis NBI to broaden the hybrid current and pressure profiles (1 neutral beam line is tilted $\rightarrow \sim 4$ MW off-axis power)

IAL FUSION FACILIT SAN DIEGO

Apply this Concept to the q_{min}~1 Hybrid Plasmas

Plasmas with Off-axis NBI Have Similar Ideal Limits as the On-axis Cases

• The with-wall β_N limits of the OFF-axis cases are ~10% higher

The Plasma Shape Can Be Optimized to Yield Higher Ideal Limits

The modelling will guide the design of the next hybrid experiment

F. Carpanese, Politecnico di Milano

Wider Shape, with Larger Squareness, will be Proposed for the Next Hybrid Experiments

The LFS wall stabilization (outer gap) is stronger than the HFS (inner gap)

F. Carpanese, Politecnico di Milano

Higher order changes \rightarrow squareness affects the stability

All the High- β_n Plasmas Have High NBI Torque

MOD

What happens at low rotation, high β_N ?

- **Experiment** \rightarrow decrease the rotation at fixed β_N , q_{95}
- Model \rightarrow capture the rotation effects to extrapolate what we can't do
- To eliminate perturbations due to equilibrium and profile details, the model uses:
 - A <u>fixed equilibrium</u> and n_e, T_e, n_i, P_{NBI}, etc, from a DIII-D plasma
 - A self-similar rotation profile series

Rotation Effects Above the No-wall β_n Limit

- Broad peak in the response at 20-25 km/s (~1% of the Alfvén velocity)
- Below the no-wall limit (IBS) the trend is increasing

Rotation Scan: MARS-K Reproduces the Response Amplitude with Fast-ions

- With thermal and fast ions the amplitude results are in the ball-park
- ...but the phase is underestimated by ~25%
- If the fast-ions damping is neglected, the results diverge (more) from the measurements

No Model is Perfect — the Way Forward

Identify what physics is not present and could be relevant:

- Zero collisionality → New MARS-Q: energy dependent collisionality operator
- The present version of MARS-K assumes a Maxwellian fast-ion distribution (experimental profile in ρ , but no $v_{//}$, v_{perp} dependence)
- Neutral beam ions in DIII-D are strongly anisotropic:

New MARS-Q version with more realistic distribution \rightarrow resolve the rotation scan discrepancy?

Experimental beam-ion distribution (NUBEAM)

Discussion and Conclusions

- The development of viable scenarios for ITER and FNSF is based on experiments and modelling efforts
- The ITER Baseline Scenario: the zero torque regime operates on a marginal stability point
- MHD spectroscopy can measure the approach to a stability limit
 Warning tool for disruption avoidance?
- The MARS-K model reproduces the plasma response measurements up to the no-wall limit
 - Fast NBI-ion damping is crucial above 90% of the limit
- The steady-state hybrid scenario: attractive solution for ITER and FNSF, the ideal and tearing limits can be increased
- The rotation dependence at high β_N is challenging
 - New version of MARS-K includes more physics

