The Pursuit of Fusion Energy: Where are we, and where should we be going?

> Dale Meade Fusion Innovation Research and Energy (formerly PPPL)

Plasma Physics Colloquium Applied Physics and Applied Mathematics Department Columbia University April 11, 2014

http://fire.pppl.gov

- The need for an abundant non-CO2 emitting energy source is generally accepted. However, there is debate about whether there is a near term urgency and the best way to produce abundant non-CO2 emitting energy.
- Fusion would be an ideal long term energy source, but......
 - it is a very difficult scientific and technical challenge
- Where are we today in the pursuit of fusion energy?

Fusion Fire Powers the Sun

"We need to see if we can make fusion work."

John Holdren, @MIT. April, 2009

There are Three Main Fusion Concepts

Spherical Inertial

gravitational

transient compression

drive (laser-D/l, beam)

radial profile

time profile

electrostatic

Toroidal Magnetic

surface of helical B lines

twist of helix

twist profile

plasma profile

toroidal symmetry

<u>Reactivity</u> Enhancement

muon catalysis

polarized nuclei

others?

Fusion Temperatures Attained in the Laboratory, Fusion Confinement One Step Away

Significant Fusion Power (>10MW) Produced 1990s

- 1991 JET 90/10-DT, 2 MJ/pulse, Q ~ 0.15, 2 pulses
- 1993-97 TFTR 50/50-DT, 7.5MJ/pulse, 11 MW, Q ~ 0.3, 1000 D-T pulses,
 - Alpha heating observed, Alpha driven TAEs alpha diagnostics
 - ICRF heating scenarios
 - 1 MCi of T throughput, tritium retention
 - 3 years of operation with DT, and then decommissioned.
- Advanced Tokamak Mode Employed for High Performance
 - Improved ion confinement TFTR, DIII-D, $Q_{DTequiv} \sim 0.3$ in DIII-D 1995
 - $n\tau_E T$ record => $Q_{DTequiv}$ in JT-60U DD using AT mode 1996
 - Bootstrap and current drive extended
- 1997 JET 50/50-DT 22MJ/pulse, 16 MW, Q ~ 0.65, ~100 D-T pulses
 - Alpha heating extended, ICRF DT Scenarios extended,
 - DT pulse length extended
 - Near ITER scale D-T processing plant
 - Remote handling

Initial D-T Results From TFTR

1st DT Experiments with 50/50 DT fuel, Dec 9-10, 1993

L. Johnson J. Strachan

Significant Fusion Power (>10MW) Produced 1990s

- 1991 JET 90/10-DT, 2 MJ/pulse, Q ~ 0.15, 2 pulses
- 1993-97 TFTR 50/50-DT, 7.5MJ/pulse, 11 MW, Q ~ 0.3, 1000 D-T pulses,
 - Alpha heating observed, Alpha driven TAEs alpha diagnostics
 - ICRF heating scenarios
 - 1 MCi of T throughput, tritium retention
 - 3 years of operation with DT, and then decommissioned.
- Advanced Tokamak Mode Employed for High Performance
 - Improved ion confinement TFTR, DIII-D, $Q_{DTequiv} \sim 0.3$ in DIII-D 1995
 - $n\tau_E T$ record => $Q_{DTequiv}$ in JT-60U DD using AT mode 1996
 - Bootstrap and current drive extended
- 1997 JET 50/50-DT 22MJ/pulse, 16 MW, Q ~ 0.65, ~100 D-T pulses
 - Alpha heating extended, ICRF DT Scenarios extended,
 - DT pulse length extended
 - Near ITER scale D-T processing plant
 - Remote handling

From 1996 to 2004 the US Considered the NEXT Step in MFE

B = 7 T

B = 10 T B = 3.8 T B = 13 T R = 1.3 m

IGNITOR

PCAST 5

ARIES-RS (1 GWe)

B = 8 T

ITER-FEAT

B = 5.3 T

Cost Drivers	IGNITOR	FIRE	JET U	PCAST	ARIES-RS	ITER-FEAT
Plasma Volume (m ³)	11	27	108	390	350	828
Plasma Surface (m ²)	36	60	160	420	420	610
Plasma Current (MA)	12	7.7	6	15	11.3	15
Magnet Energy (GJ)	1.3	5	1.6	40	85	41
Fusion Power (MW)	100	150	30	400	2170	400
Burn Duration (s), inductive	~1	20	10	120	steady	400
τ Burn Flat-top/ τ CR		~2	0.6	1	steady	2
Cost Estimate (\$B-2000\$) -propos Fusion Core Mass (kilo tonnes)	sers	1.2 1.4	~0.6	7.1 10	11.2* 13	5.0 19

* first, \$5.6 B for 10th of a kind AR RS/ITERs/PCAST/FIRE/IGN

ITER was proposed in 2000 by EU, JA and RF to Demonstrate the Scientific and Technological Feasibility of Fusion Power

- ITER is a large step. The core tokamak is the physical size of a fusion power plant.
- For the first time the fusion fuel will be dominantly heated by the fusion reactions.
 - Today: 10 MW(th) for ~1 second with gain ~1
 - ITER: 500 MW(th) for >300 seconds, gain >10
- Many of the technologies used in ITER will be the same as those required in a power plant.
- Further science and technology development wills
 be needed to bridge the gap to a fusion DEMO.

On January 30, 2003 President Bush announced that the US would join the negotiations on the construction and operation of ITER. The US cost was expected to be roughly 10% of the total estimated cost of \$5B.

In November 2006 the World Decided to Build ITER

- ITER is now under construction by a seven party (EU, JA, RF, KO, IN, CN and US) international organization. However, as predicted by several wise people there are issues associated with management structure, etc.....
- This has caused schedule delays and cost increases. Now 1st Plasma ~ 2023, 1st DT plasma >2030, US cost ~\$4B
- I personally have confidence that the management problems of ITER can be solved, and that ITER could achieve its technical mission.
- When ITER produces 500MW for 300s at a gain of 10 there will be a sea-change in how people view fusion energy.
- We (you) must anticipate that sea change, what needs to be done in addition to ITER to realize the promise of Fusion Energy?

Today's Talk (Discussion)

- The need for an abundant non-CO2 emitting energy source is generally accepted. However, there is debate about whether there is a near term urgency and the best way to produce abundant non-CO2 emitting energy.
- Fusion would be an ideal long term energy source, but......
 - it is a very difficult scientific and technical challenge
- Where are we today in the pursuit of fusion energy?
- What are the steps that still need to be taken on the road to fusion energy?
- A technical road map with hazards identified, options available and mileage markers is one the first steps in developing a strategic plan for fusion energy.

Why Work on a Fusion Roadmap Now?

- To demonstrate that there are realistic technical paths to a Magnetic Fusion DEMO

 essential to convince others that fusion is worth supporting even if the funding
 is not yet available to follow an aggressive path.
- To update previous studies, and develop some initial views on the relative attributes of various paths. This exercise is not to down select !!
- In difficult of times, it is even more important to have a plan to make progress. Unfortunately, the US DOE has been resisting the development of a Strategic Plan for fusion energy by the fusion community.
- The European Union has developed a Road Map for Fusion Energy, it has been accepted by the European Commission and was used to justify budget increases for the next EU framework plan Horizon 2020.

Magnetic Fusion Program Leaders (MFPL) Initiative

U. S. Magnetic Fusion Program Leaders: S.Prager, PPPL; T. Taylor, GA; N. Sauthoff, USIPO; M.Porkolab, MIT; P. Ferguson, ORNL; R. Fonck, U.Wisc; D. Brennan, UFA.

Goal: Develop and assess three aggressive technically feasible, but constrained, paths for the US Fusion Program to support or motivate a commitment to DEMO on the timescale of ITER Q \approx 10 experiments (nominally 2028).

Task: Building on previous Fusion Community workshops and studies, assess the technical readiness and risks associated with proceeding aggressively along three potential paths:

- 1) ITER plus Fusion Nuclear Science Facility leading to a Tokamak DEMO
- 2) ITER directly to a Tokamak DEMO (possibly staged)
- 3) ITER plus additional facilities leading to a QS Stellarator DEMO

Each of these paths will include major aspects of a broad supporting research program.

Process:

- 1. A core group (10) has been formed
- 2. Solicit review from a large (30) group of technical experts and external advisors
- 3. Aiming for interim report to Magnetic Fusion Program Leaders by Spring 2014

An Advanced Tokamak Path to Fusion Energy

Road Map Study Group

Members

Dale Meade Steve Zinkle Chuck Kessel Andrea Garofalo Neil Morley Jerry Navratil Hutch Neilson Dave Hill Dave Rasmussen Bruce Lipschultz/Dennis Whyte

Background

FESAC 35 Yr RJG	(2003)
ReNeW Study	(2009)
FESAC Materials SZ	(2012)
FESAC Priorities RR	(2013)
EU Road Map/Annex	(2013)

Chair Materials Power Plant Studies, FNSPA Toroidal Physics Blanket Technology University Experimental Perspective 3-D Toroidal, Road Map Studies Toroidal Alternates Enabling Technology, ITER Plasma Wall Interactions Reactor Innovations

FESAC Opportunity MG (2007)FNSP Assessment CK (2011)FESAC Int Collab DM (2012)FESAC Facilities JS (2013)China CFETR Plan (2013)

General Considerations

- Road Map driven by Goal and Associated Missions (Goal is a Fusion Power Plant)
- Strive for quantitative milestones and metrics as mileage markers
 - Technical Readiness Levels
 - Quantitative dimensional and dimensionless Figures of Merit
- Setup logic Framework for Mission milestones and Decision points
- Identify facilities needed to achieve mission milestones
- Must have parallel (overlapping) steps (as in the 1970s) for a reasonable schedule
- Detailed cost estimates are beyond scope our exercise, however
 - Consider ball park cost when choosing steps, avoid Mountain of Death
 - Our charge assumes funding capability to move forward as in 1970s
 - look for near term deliverables to bootstrap funding of later steps
- Gap/Risk Assessment
 - Gap assessment is straight forward, but quantitative risk assessment is difficult.

ARIES Studies Identified General Characteristics of Magnetic Fusion Demonstration Plants

Compact Stellarator

	ARIES-ACT1	ARIES-ACT2	ARIES-CS			
R(m)	6.25	6.25 9.75				
B(T) / B _{max-coil} (T)	6.0/10.6	8.75/14.4	5.7/15.1			
β_{N}/β_{tot} (%)	5.6/6.5	2.6/1.7	-/6.4			
P _{Fusion} (MW)	1813	2637	2440			
f _{bs} (%)	91	77	~25			
$<\Gamma_n$ > MWm ⁻²	2.5	1.5	2.6			

All steady-state at 1,000 MW_F

Mission 1. Create Fusion Power Source

Mission 2. Tame the Plasma Wall Interface

Mission 3. Harness the Power of Fusion

Mission 4. Develop Materials for Fusion Energy

Mission 5. Establish the Economic Attractiveness, and Environmental Benefits of Fusion Energy

- Restatement of Greenwald Panel and ReNeW themes
- Each Mission has ~ five sub-missions

TRLs Express Increasing Levels of Integration and Relevance to Final Product and can Identify R&D Gaps.

TRL	Generic Description (defense acquisitions definitions)
1	Basic principles observed and formulated.
2	Technology concepts and/or applications formulated.
3	Analytical and experimental demonstration of critical function and/or proof of concept.
4	Component and/or bench-scale validation in a laboratory environment.
5	Component and/or breadboard validation in a relevant environment.
6	System/subsystem model or prototype demonstration in relevant environment.
7	System prototype demonstration in an operational environment.
8	Actual system completed and qualified through test and demonstration.
9	Actual system proven through successful mission operations.

These terms must be defined for each technology application

ITER +	FNSF =:	> Adva	nced T	okamak	Demo P	athway			
Mission 1: Create Fusion	Power S	Source							
	Conc	ept Developr	nent	P	roof of Princip	le	Pro	oof of Perform	ance
Technical Readiness Level	1	2	3	4	5	6	7	8	9
Attain Burning Plasma Performance				Now	TT	=R	DI	FMO	Power Plant
Ba5/4, $n\tau_E T_i$, Q_{DT}									
Control High Performance Burning Plasma			Now	Support Pam	TT	=R	DI	FMO	Power Plant
β_{N} , nT, disruptivity, $\tau_{controlled}$, $P_{\alpha-loss}/P_{heat}$				Support right	FNSF	-1			Tower Fluite
Sustain Magnetic Configuration	ΔT			New	Support Dam	TTER		DEMO	Dowor Dlant
f D /D / c oto			Now	Now	Support Pgm		\star	DEMO	Power Plant
T_{CD} , P_{CD}/P_{heat} , $\tau_{sustained}/\tau_{CR}$, etc	51		Now	Support	Program	FNSI	-		
					Choose AT or S	f for FNSF	OK for St	teady State?	
Sustain Fusion Fuel Mix and Stable Burn					Now	ITER	l	DEMO	Power Plant
$n_D(0)n_T(0)/n_e(0)^2$, Pop.Con stable, τ long	I					FNS	=		
Attain High Performance Burning Plasma			Now	Support Pgm	ITI	ER			
Compatible with Plasma Exhaust					Support Pgm	FNS	=	DEMO	Power Plant
T_{ped} , n_{ped} , fuel dilution, $P_{core-rad}$									
Major Issues									
Can AT be sustained in DEMO relevant m	node with low	disruptivity?			Mo	ore Work No	eeded he	ere	
Does QSS confinement extend to BP reg	ime?			 Show JT6 	60-SA, etc	explicitly			
Can high performance be sustained in ei	ther with DEM	IO relevant Pl	Cs?	 Need to r 	review				
Can fuel mix be sustained in either?				 Compare 	with EU				
				NAS IFF					
					Guidalinas				
				• DOL TRL	contentes	opch TDI w	ith iccur	, milasta	200
Support Facilities				• Describe	requits for	each IRL W	iui issue	s, miesto	les
Existing DD tokamaks (domestic and fore	eign)								
Upgrades to existing facilities									
New Facilities				Note- thi	s is linked	l to an acti	ve Exce	el spreads	sheet
					ouble cli	ck to open	spread	lsheet	

• Attain high burning plasma performance

TRL 4: Q~1 achieved in DT experiments in TFTR/JET & extended with DT in JET 2015 with a Be wall

• Control high performance burning:

TRL 3: Q~1 DT experiments in TFTR/JET see self-heating

TRL 4: DIII-D ECH dominated ITER baseline experiments

JET DT experiments on TAE transport in Q~1 DT plasmas with Be walls

• Sustain fusion fuel mix and stable burn:

TRL 5: NBI Tritium fueling in TFTR/JET & cryo pellet injection technology

• Sustain magnetic configuration-AT Configuration:

- TRL 4: Bootstrap current widely observed; non-inductive sustained plasmas observed on JT-60U & DIII-D using NBI-CD/LHCD/ECCD
- TRL 5: DIII-D/K-STAR/JT-60SA observation of ≥80% bootstrap sustained plasma EAST/K-STAR/WEST observation of RF & bootstrap sustained SS plasma

• Sustain magnetic configuration-ST Configuration:

- TRL 3: Bootstrap current observed in NSTX; CHI demonstrated non-inductive current drive
- stale TRL 4: NSTX-U demonstrate non-inductive start-up and sustainment extrapolable to FNSF-AT

• Attain high burning plasma performance compatible with plasma exhaust:

- TRL 3: JET/DIII-D/ASDEX-U demonstration of detached divertor operation
- TRL 4: JET/DIII-D/K-STAR demonstration of detached divertor in SS AT ITER like plasma
- TRL 4: NSTX-U demonstration of advanced divertor operation in FNSF-ST like plasma
- TRL 5: Test stand validation of long lifetime divertor PMI material

Mission 1: Create Fusion Power Source

Modification of Kikuchi figure

ITER + I	FNSF =:	> Adva	inced To	kamak	Dem	io Pa	thway			
Mission 2: Tame the Plas	ma Wall	Interfa	ace							
						Co	mpare wit	h FESAC Z	inkle Pane I	MI TRL Chart
	Conc	cept Develop	oment	Pr	oof of F	Principle		Pro	oof of Perforn	nance
Technical Readiness Level	1	2	3	4	5		6	7	8	9
Remove Plasma Exhaust Heat and			Now	Support Pgm		ITER				
particles on Divertor and First Wall							FNS	F	DEMO	Power Plant
$P_{div}/A_{div} < 10 \text{ MWm}^{-2}$, pulse length, T_{PFC}										
Mitigate Transient Heat Loads (Elms/Disrup	tions)		Now	Support Pam		ITER				
(integrated with plasma control issue)	,			5			🗡 FNS	F	DEMO	Power Plant
MJm ⁻² , freq, freqxMJm ⁻²							Disruptior	has been o	contolled?	
Reduce Material Migration (erosion), dust		Now	Support Pam	IT	ER					
mm per FPYm ⁻² , lifetime(FPY)						FNSF		DI	EMO	Power Plant
Control Plasma Contamination (He ash, imp	ourities)			Now						
Z _{eff} , P _{rad-core} , P _{rad-edge}	,									
Reduce Tritium Retention			Now	TT	=R	hic	iher?			
T _{inventory} (kG-T),						FNSF		DI	EMO	Power Plant
Develop Neutron Resistant PFC/FW mat'l		Now		IT	ER					
dpa, FPY			Suppo	ort Pgm		FNSF		DI	EMO	Power Plant
Major Issues				Com	nara	with	FILass	assma	nt osn l	
choice of material for FNSF- when?, How?	, R&D needed	d		Com	Jaie	VVILII		633116	in esp i	
Test improved divertor configuration - who	ere, when									
Integrated test of PFC concept/material/to	okamak-plash	na								
Required pulse length, H/D/I, n-fluence,										
Support Facilities										
single effect - high power steady-state line	ear									
toroidal - dedicate existing facilities, upgra	ade existing o	or new speci	alized facility							
Need to identify critical PMI facilities										

Mission 2: Tame the Plasma Material Interface

ITER +	FNSF =	> Advai	nced Io	катак	Demo F	Pathway	Y			
Mission 3: Harnessing the Power	of Fusion									
	Con	cept Developn	nent	P	roof of Princip	ble	Pi	Proof of Performance		
Technical Readiness Level	1	2	3	4	5	6	7	8	9	
Demonstate Fusion Power Conversion			now	BT3F			FNSF	DEMO	Power Plant	
			Benchtop	/Lab		ITER-TBM				
Produce Required Tritium		now	Benchtop	/Lab		ITER-TBM		DEMO	Power Plant	
				BTEF			FNSF			
Establish MTBF/MTTR of Blanket/FW Syste	ms	now	Benchtop	/Lab	ITER-TBM			DEMO	Power Plant	
				BT3F	/ BTEF		FNSF			
					RHDF					
Tritium Fueling and Exhaust Processing				now	ITER, Other	Tokamaks		DEMO	DEMO	
				Benchtop/Lat	FCDF			FNSF		
Major Issues										
PbLi MHD Flow Control, Pressure Drop, T	ransport Phen	omena								
PbLi Chemistry Control/Processing										
Helium-cooled FW and Structure Thermo	mechanics									
Fabrication and Reliability of Complex Str	ructures Unde	r Combined lo	ads							
Component synergistic failure modes, rat	tes and effects	5								
Mechanisms for n decrease in MTTR										
Plasma Exhaust Processing Time and Ava	ailability									
Simulating Fusion Environment in Non-Fu	usion Test Fac	ilities								
Support Facilities				Summary of 1s	t IAEA DEMO W	orkshop				
Blanket Thermomechanics and Thermoflu	uid Test Facilit	y (BT3F)		1) thermofluid-	-MHD behaviour	of complex geo	metry, multi-c	hannel blanket d	esigns;	
Bred Tritium Unit Cell and Extraction Test	t Facility (BTE	F)		2) impact of ne	eutron irradiatio	n on properties	and performan	ce;		
Fuel Cycle Development Facility (FCDF)				3) high duty-cy	cle plasma exha	aust processing;	and			
Remote Handling Development Facility (F	FHDF)			4) remote hand	lling and mainte	nance of blanke	t/FW compone	nts.		
ITER Test Blanket Module Experiments (I	TER-TBM)			Facilities to add	ress these issue	es are required f	or TBM, FNFs,	and DEMO.		

Mission 3: Harness the Power of Fusion

DRAFT

Blanket Facilities for all Pathways

ITER +	FNSF =	> Adva	inced To	kamak	Demo P	Pathway	,		
Mission 4: Materials for F	usion Po	ower							
	Con	cept Develop	oment	P	roof of Princip	le	Pro	of of Perform	nance
Technical Readiness Level	1	2	3	4	5	6	7	8	9
Conquer Neutron Degradation	Zinkla Tabla	from Moy 1	6 Call - this is a		Mission				
conquer Neutron Degradation		ITOITI May 1							
Science Based Design Criteria Them/Me	ch	Now	Non-Nucl Tes	t Stand Integ	FusNeutS	FNS	SF		
			_	ITER	ТВМ		DE	MO	Power Plant
Explore Exprication/Joining Trade offs		Now	Non-Nuc Tost	FucNoutS	NNTS Intog	ENG	25	DEMO	Power Plant
Explore rabilication/Joining Trade ons		NOW	Ion/Fiss neut	rusiveuts	ITER TBM	T IN.	51	DLMO	Fower Flanc
Resolve Compatibility and Corrosion Issu	Jes	1	Now	Non-Nuc TS	NNTS Integ	FNS	SF	DEMO	Power Plant
Padiation Effects in Eucion Environment		Now	Ion/Fice pout	Fuch	loutS	l			
		NOW	10H/HSS Heut	rusiv	leuts	ſ			
Mat'l Qualification in Fusion Environment	t	Now	Ion/Fiss neut	FusN	leutS	FNS	SF		
Structural Stability			_	ITER TBM			DE	MO	Power Plant
Mat'l Qualification in Eusion Environment	•	Now	Ion/Fiss neut	Fuel	loutS	ENG	25		
Mechanical Integrity	L Contraction of the second seco		10171133 11600	T USIN	leuts		DE	MO	Power Plant
; ,									
Fusion Environment Effects on Tritium	Now	NNTS	Ion/Fis	s neut	ITER TBM	FNS	SF		
Retention and Permeation					FusN	eutS	DE	:MO	Power Plant
Major Issues:									
Support Facilities:									
• • • • • • • • • • • • • • • • • • • •									

Mission 4: Create Materials for Fusion Power

Modification of Zinkle fig.

Materials Facilities for all Pathways

ITER +	FNSF =	> Adva	nced To	okamak	Demo F	Pathwa	ay		
Mission 5: Establish the I	Economic	Attract	iveness	and Env	ironmen	tal Ben	efits of Fu	ision E	nergy
	Conc	cept Developr	nent	P	roof of Princip	le	Proo	f of Perforr	nance
Technical Readiness Level	1	2	3	4	5	6	7	8	9
Establish Competitive Cost of Electricity		Now	(eg- higher E	3,more efficier	nt current driv	e, reduce c	omplexity, cheap	er manufa	cturing,)
Reduce Plant Capital Cost	Now	(eg- reduce	complexity, c	heaper manuf	acturing,)				
Demonstrate Safety and Environmental			No	w - TFTR/JET	IT	ER	DEN	10	Power Plant
Benefits (separate Safety and Environme	ental?)			Support Pam	FN	ISF			
Exploit Innovation in Physics, Technology and Manufacturing		Now							
Major Tecuco									
Total cost of fusion must be competitive									
Fusion program must be vigilant to ensu	ure that the sa	fety and envi	ronmental ad	vantages of fi	ision energy a	re realized			
rusion program must be vigilant to ensi				vantages of re	ision energy a	ire redized.			
Support Facilities:									
Other Important Activities that need	to be mentio	ned somewh	nere						
Supporting Resource 1: Establis	n Enabling	Plasma Te	chnology f	or Fusion F	Should we have	ave a full mi	ission on this??	it tends to	get lost
Enabling Plasma Tachnologias									
Plasma Actuators									
Development of Low Cost High Field Ma	anets								
ie a section on R&D to support Mission	s above								
Plasma and Machine Diagnostics									
Plasma Control									
Development of Diagnostics Compatible	e Fusion Enviro	nment							
Supporting Resource 2: Strengt	henina the l	Educationa	al Infrastru	cture supr	ortina Fus	ion Rese	arch		

ITER + FNSF => AT DEMO Pathway (Logic)

Facilities for US Magnetic Fusion Program Road Map

ITER + S	Stell Pr	ogram	=> Stell	arator	DEMO F	Pathway	,		
Mission 1 Create Fusion	Power S	Source							
	Con	cent Develop	ment	D	roof of Princin		Pro	of of Perform	ance
Technical Readiness Level	1	2	3	4	5	6	7	8	9
Attain Burning Plasma Performance			Now	LH	ID / W7X / IT	ER	Stell. FNSI	> DEMO	Power Plant
Ba5/4, $n\tau_E T_i$, Q_{DT}					QSS equivale	ence with Tokar	nak physics?		
Control High Performance Burning Plasma			Now	QS S	tell. Exp't. / \	N7-X	Stell. FNSI	F> DEMO	Power Plant
$\beta_{\text{N}}\text{, nT, disruptivity, }\tau_{\text{controlled}}\text{, }P_{\text{a-loss}}/P_{\text{heat}}$									
Sustain Magnetic Configuration				Now	(QS Stell. Exp't.	/ W7-X / LH	D	Power Plant
f_{CD} , P_{CD}/P_{heat} , $\tau_{sustained}/\tau_{CR}$, etc									
Sustain Fusion Fuel Mix and Stable Burn			Now	ITER /	W7-X	Stell	<mark>. FNSF> D</mark>	EMO	Power Plant
$n_D(0)n_T(0)/n_e(0)^2$, Pop.Con stable, τ long									
Attain High Performance Burning Plasma			Now	Q	S Stell. Exp't	. / W7-X / ITE	R 🔔	FNSF> DEMO	Power Plant
Compatible with Plasma Exhaust							*		
T _{ped} , n _{ped} , fuel dilution, P _{core-rad}									
Major Tssues									
Can OS stellarator take credit for ITER hu	rning plasm	a results?							
Does confinement extend to BP regime?									
Can high performance be sustained in eith	her with DEM	MO relevant P	FCs?						
Can fuel mix be sustained in either?									
Comments									
Stell. FNSF is most likely a pilot plant. De	efinition of D	EMO needs to	be clarified.						
Assumes Quasi-Symmetric (QS) Stellarato	or developm	ent path, and	l ITER BP physi	cs results are	e transferable	to QS stellara	tors.		

See next slide for explanation

ITER + QS-Stell Program => Stellarator DEMO Path (Logic)

Facilities for US Magnetic Fusion Program Road Map

Next Steps for MFE Road Map Activity

• Complete draft framework for each path forward:

Review critical issues

TRL assessments

Milestones-much more work needed, esp. for next 10 years

Decision points

Complete facility schedules, esp. PMI facilities

Define and review the range of possible missions for an FNSF (CTF =>Pilot) Review aggressiveness of the schedule (More or less)

Compare relative technical gaps and risks

Resource needs (more than hardware)

• Seek input and review by technical experts and the fusion community

• Continue working with international groups that are developing Road Maps for their National Programs (e.g., 2nd IAEA DEMO Programme Workshop, Dec 16-20, 2013)

Comments – to the working group or me <u>dmeade@pppl.gov</u>

Concluding Remarks

- The technical basis for the US to move aggressively to a next major step in MFE is strong. A sufficient basis has been there for 20 years.
- The technical issues to be solved are well understood and a framework has been identified that could help develop a plan to achieve MFE.
- For the other fusion partners in ITER, an abundant energy source with benign environmental impact is a near term urgency, they (esp. the Chinese) are moving forward aggressively.
- The US is out of synch with the world magnetic fusion community, and is in danger of falling from among the leaders to a follower.
- The Lesson of March Madness
- The Fusion Energy Sciences Advisory Committee has just been asked to prepare a report on priorities for fusion research activities for the next 10 years.

Comments – to the working group or me <u>dmeade@pppl.gov</u>

What about Inertial Fusion Energy?

 The construction of the National Ignition Facility (NIF) was initiated in 1994 by the DOE National Nuclear Security Administration, with the goal of supporting stockpile stewardship. The primary NNSA project milestone for NIF is to achieve ignition defined as

Fusion Gain = Fusion Energy Produced/Laser Energy on Target = 1

- The NIF was completed in May, 2009 at a cost of ~\$4B, and began DT experiments in Sept 2010.
- The NIF laser has performed extremely well at high power (1.8 MJ) and an extensive set of diagnostics has been installed.
- The fusion energy produced has been increased steadily to ≈ 27 kJ, with a corresponding Fusion Gain ≈ 0.015.

A new "High-foot" design uses same target but higher initial laser power to reduce growth of surface perturbations

* Analysis ongoing

GOAL: Performance that is understood and well matched to calculations

Lawrence Livermore National Laboratory

Fusion Energy per Pulse is a Measure of Progress in Fusion Energy

Fusion Plasma Performance Required for Fusion Power

The performance achieved on MFE and IFE fusion experiments using DT fuel is compared with the fusion performance required for a Fusion Power Plant.

	Const.	Date of	Fusion	Fusion Gain	Fusion Gain	Fuel Gain	Fuel Gain	GAP in Fuel
	Cost	Fusion Result	Yield	Achieved	Required for	Achieved	Required for	Gain to
	\$B		MJ		Power Plant		Power Plant	Power Plant
MFE								
TFTR	\$0.5B1	1994	7.5	0.28	35	0.28	35	125
JET	\$0.5B ¹	1997	22.2	0.65	35	0.65(~1)	35	54
IFE								
NIF	\$4.5B ²	2013	0.028	0.015	65	~2	8,125	4,075
MFE- U	nder con	struction	Goal	Goal				Goal
ITER	\$20B ³	2030	200,000	10	35			3.5

Fusion Yield = fusion energy produced during a single experimental pulse,

MJ is 1 million joules of energy or 1 million watts for 1 second. Fusion Gain = fusion power produced/ power used to heat fuel (standard definition) Fuel Gain = fusion power produced/ power absorbed by fuel (a new definition) In definitions above power is used for magnetic fusion, and energy for inertial fusion

Notes:

1. TFTR and JET construction costs in 1980 dollars

2. NIF construction costs in 2004 dollars

3. ITER Construction Costs estimated by EU in 2013 dollars

May 26, 2014

U.S. Fusion Energy Sciences Funding

(2012 Dollars)

