

Recent development of Ion sources Science & Technology at INFN-LNS, Catania

S. Gammino

Istituto Nazionale di Fisica Nucleare-Laboratori Nazionali del Sud Catania - ITALY

APAM, New York, July 25th, 2013

Istituto Nazionale di Fisica Nucleare (INFN)

Since the foundation year (1951), it has been devoted to Nuclear and Particle Physics. During last 10 ys, the multidisciplinary applications of NP-PP has become relevant (detectors and accelerators are used in other fields)

ANVUR evaluatation (2004-10) recently placed INFN 1° among Italian research institutions

University

Industry

4 National Laboratories (3 with accelerators), links worldwide

LN Frascati

Nuclear & Particle Physics Nuclear Astrophysics

LN Legnaro

Nuclear & Particle Physics Applications

LN Sud

Fisica nucleare Nuclear Astrophysics Applications LN Gran Sasso Cosmic rays

Nuclear Astrophysics

INFN scientists contributed to the CERN, Geneva, since the early beginning and have had a major role in the major achievements including the Higgs Boson discovery

INFN - Laboratori Nazionali del Sud are located in the Catania University campus area

LNS in numbers

ssociated researchers: 120 • Users (in the last 3 years): 545 • Foreign users: 180

members: 120 (35 phys. + eng.

• Total area: 35000 m² • Total volume: 97000 m³

Annual scientific production: about 150 (papers and proceedings) • Budget: ~ 11 M€/year (excl. Salaries)

LNS lay-out: accelerators and experimental halls

Beams developed at the SuperconductingCyclotron

Many Beams are unique in Europe

AX	E (MeV/a.m.u.)
H,+	62,80
H,+	30,35,45
2D+	35,62.80
4He	25,80
He-H	10, 21
⁹ Be	45
12C	23,62,80
13C	45,55
14N	62,80
160	21,25,55,62,80
180	15,55
19F	35,40,50
20Ne	20,40,45,62
²⁴ Mg	50
36Ar	16,38
40Ar	15,20,40
⁴⁰ Ca	10,25,40,45
⁴⁸ Ca	10,45
58Ni	16,23,25,30,35,40,45
64Ni	25,35
68Zn	40
74Ge	40
⁷⁸ Kr	10
86Kr	10,15,20,25
93Nb	15,17,23,30,38
112Sn	15.5,35,43.5
116Sn	23,30,38
124Sn	15,25,30,35
129Xe	20,21,23,35
197Au	10,15,20,21,23
208Pb	10

NS Superconducting Cyclotron

Bending limit	K=800	
Focusing limit	Kfoc=200	
Pole radius	90 cm	
Yoke outer radius	190.3 cm	
Yoke full height	286 cm	
Total weight	176 tons	
Min-Max field	2.2-4.8 Tesla	
Main coil At	6.5 10 ⁶	
Sectors	3	
Min. hill gap	8.6 cm	
Max valley gap	91.6 cm	
Trim coils	20	
Dees	3	
RF range	15-48 MHz	
Oper. Harmonics	1,2,3,4	
Peak dee voltage	100 KV	

Use of the Superconducting Cyclotron and Tandem beams in 2011

Nuclear astrophysics: LNS excellence

INFN

A great interest in the scientific community moves to the study of nuclear reactions of astrophysical interest. The main goal of nuclear astrophysics is the measurement of cross sections for nuclear reactions that are crucial for the understanding the evolution of the Universe. These reactions are involved in different stellar scenarios, from the first few seconds of the Big Bang which created the seed material for our universe, through to the present energy generation in our Sun which keeps us alive.

The LNS experimental activity in nuclear astrophysics is mainly based on the **Trojan Horse Method (THM)**, which has been developed at LNS and successfully applied in several reactions. Today the THM is considered as the unique indirect technique which allows to overcome the coulomb field effects - coulomb barrier and electron screening - in the **measurements of nuclear reaction cross sections at the astrophysical energies (< 100 keV).**

Catana: eye tumours protontherapy facility (10 yrs after)

<u>Figure 6</u>: Principle of the irradiation The range shifter and the modulator wheel are represented by the range modulator.

- 350 patients treated (Feb. 2002-Jul 2012)
 - 336 uveal melanomas
 - 8 conjunctival melanoma
 - 6 other malignancies (orbital RMS, non-Hodgkin Lymphoma, various metastases)
- Follow-up on 220 patients: 95% of success

5 sessions on average per year

PT Center at Cannizzaro Hosp. in Catania. Tender in progress (112 M€) with investment from UE. INFN is consultant for the Sicilian Regional Gov. IBA, Varian and BEST are the competi<u>tors</u>____

NEMO and KM3NeT: High energy neutrino astronomy at LNS

Neutrinos will provide unique pieces of information on the High Energy Universe. Detection possible by tracking the secondary muons in a km-cube size array of photosensors in deep sea waters

20.8 M€(PON Funds) are at LNS for the realization of 25 towers at LNS-Porto Palo Lab

The Catania Test Site: a multidisciplinary deep sea-lab

LIDO demo mission of ESONET-EMSO: Refurbishment of SN1 and OnDE observatories Goals: Bioacoustics, ocean monitoring,Tsunami warning.

Infrastructure requested by UCL and CSIC for installation of deep-sea stations in 2013

ELI-Beams and the ELIMED idea

- Why ELIMED?
- Realization of a facility at ELI-Beamlines, to demonstrate the clinical applicability of the laser-driven protons
- Compactness, cost-reduction, new pioneering treatment modalities

• Why ELIMED at INFN?

-The project we are proposing is related to the preparatory phase of ELIMED (2013-2015): optimisation of the proton beams, transport, diagnostic dosimetric

ACCELERATORS

High power, highly reliable Front Ends

- High intensity light ions Linacs : systems design, beam dynamics, performance and current projects, reliability issues,
- Synergies with ongoing and planned projects on accelerator driven systems, transmutation, neutrino factories, HEP injectors, materials science

		6
	Nominal	- 23
Average beam power	5.0 MW	1-
Macropulse length	2.86 ms	-1
Repetition rate	14 Hz	51
Proton energy	2.0GeV	-/
Beam current	62 5mA	
Duty factor	4%	
Beam loss rate	< 1 W/m	

- Beam loss handling and diagnostics systems for high brightness hadron accelerators («1 W/m with localized exceptions)
- Current state of theory and simulation tools, confronting predictions with experiment,
- Low-energy superconducting structures, to be checked: how competitive they are for energies below 100 MeV...

DAEδALUS: experiment overview

Accelerator Complex designed by LNS

INFN

- LNS have a key role in the european framework:
- •for stable beams and RIBs at intermediate energy
- Leading role for Nuclear astrophysics (with FRIBs & Excyt beams and Troian Horse Methods)
- •Strong contribution at the development of the European/Int. projects: ESS, ELI, Eurisol, DAEδALUS
- •Applications of Nuclear Physics: Hadronteherapy, Imaging, Cultural Heritage, Radiobiology.
- •international Research Infrastructure for neutrino astrophysis and deep see applications (KM3Net).
- Almost any of this activity needs to produce specific ion beams (high current, highly charged, heavy ions, metallic species) and this is the reason for the consideration given to the Ion Sources R&D since second half of '80s

Aims and Team members

The R&D Team of INFN-Laboratori Nazionali del Sud have designed different ion sources,

- ranging from hydrogen production to heavy elements,
- either for cw and pulsed operations,
- including highly charged beam production for nuclear physics,
- for material studies,
- for hadron therapy
- for industrial applications.

Scientific output since 2000: 15-20 peer-reviewed publications/year

Ion sources R&D at the Laboratori Nazionali del Sud 1989-today

- ✓ ECR theoretical studies, microwave to plasma coupling, diagnostics
- ✓ High charge state ECR sources for the Superconducting Cyclotron
 ▷ SERSE
 - ►CAESAR
- ✓ Third generation ECRIS design (GyroSERSE and daughters)
- ✓ ECRIS for hadron therapy (Supernanogan, AISHA, CAESAR2)
- ✓ Extraction and transport of intense beams
- ✓Intense proton source (TRIPS, VIS, PSESS)
- ✓ Hybrid ion source (ECLISSE, ELIMED)
- ✓ Laser Ion Source for implanters
- ✓ High efficiency source for RIB facility EXCYT
 ▷ MIDAS & MIDAS2
 ▷ ISOLDE-type

Customer:

LNS scientific activities

Other Italian laboratories

International cooperative groups

SME development activities

e.g. TRIPS at LNL in 2006

ECR Sources for CNAO (Nat. Center of Hadron Therapy)

Two Supernanogantype sources have been built in 2006 and installed in Pavia in 2007.

Improvements:

- •Frequency tuning: larger beam brightness
- •New extraction system:
 - Better emittance, improved stability
- •New gas input system: improved stability

The activities nowadays are focused on ECRIS and MDIS and for sake of brevity I will limit the scope of this presentation to these fields, skipping the achievements in Laser Ion Sources comprehension

Laser Ion Sources

LASER ION SOURCES have been used either to directly produce the highly charged ions and to produce Q<10+ ions that are injected into ECRIS for HCI productions

Limits to the adoption of LIS as accelerators' injector: Emittance, energy spread, reproducibility, stability

Some ECR ion sources and MDIS at INFN-LNS

ECR ion sources for the superconducting cyclotron

SERSE 18 GHz CAESAR 14 GHz

| **N F N**

ECR ion sources for next generation facilities

GyroSERSE (28-37 GHz) ECLISSE

Intense proton beams for ADS&RIBs drivers

TRIPS2.45 GHzVIS2.45 GHz

High efficiency microwave discharge ion sources for RIB ionization

MIDAS 2

MIDAS 2.45 GHz MIDAS2 2.45 GHz

INFN-LNS is a reference centre either for the design of high intensity proton sources and of highly charged ion sources

Strategy:

High charge states (ECRIS): high electron density, high plasma confinement time → high frequency, high magnetic field

High current (MDIS):

high electron density (overdense plasmas), low plasma confinement time \rightarrow 2.45 GHz frequency, low magnetic field

The necessity to increase the ECRIS performances

Increase in ECRIS performances allow us to enhance the Accelerators ones without hardware modifications

Microwave discharge & ECR ion sources scheme

Hexapole

High currents of 1+ ions (mA- level) High efficiency ionisation of 1+ ions:

- high electron density (overdense plasmas)
- low plasma confinement time
- 2.45 GHz frequency
- low magnetic field

Low current of HCI High current of LCI and MCI

high electron density
high plasma confinement tim
high frequency
high magnetic field

Ion Beam

Multicharged Ion production in a minimum-|B|

Source Magnets cryostat

Plasma Chamber

Electron Cyclotron Resonance Ion Sources generate plasmas from gas or vapors and extract the ion content

High Temperature and density plasma

Atomic/Plasma physics background in ECRIS.

The ionization up to high charge state is a step by step process:

- 1. τ_i is the ion confinement time, that must be long enough to ensure a multiple ionization.
- 2. the electron temperature must be high enough to ensure ionization down to inner shells of atoms.
- 3. The electron density must be large enough to ensure that a great number of ions are created per time unit

For fully stripped light ions

$$n_e \tau_i \cong 10^{10} \, cm^{-3} \, \text{sec} \qquad T_e^{opt} = 5 \, keV$$

ECRIS scaling laws

1987 From the MINIMAFIOS results R. Geller inferred the scaling laws, which were for a few years the guiding line for ECRIS designers and users:

$$I \mu W^2 M^{-1} \qquad q_{opt} \mu \log(B^{1.5})$$

1990 High B-mode concept . This does not conflict with frequency scaling, but it limits the effectiveness of frequency scaling to the sources with high confinement, i.e.:

$$n_e K T_e << B_{\max}^2 / 2 M_o \longrightarrow \frac{B_{\max}}{B_{ECR}} > 2$$

> 1993-1995 Confirmation of HBM with the SC-ECRIS results at 6.4 GHz (LNS-NSCL collaboration).

ECRIS scaling laws

Roadmap indicated by the ECR Standard Model

- Scaling laws, R. Geller, 1987 $I \propto \frac{\omega_{RF}^2}{M}$; $\langle q \rangle \propto \log \omega^{3.5}$
- High-B Mode concept, Ciavola & Gammino, 1990

$$\begin{cases} B_{inj} \approx 3B_{ECR} \text{ or more if possible} \\ B_{rad} \geq 2B_{ECR} \\ B_{ext} \leq B_{rad} \end{cases}$$

High Magnetic --- High Frequency Fields Generators SERSE@INFN-LNS, top level for HCI production (1997-2004) GyroSERSE Project, developed in the frame of FP5 MS-ECRIS, developed in the frame of FP6
The scaling laws for ECR ion sources and the 'High B mode' concept have been confirmed by the experiments carried out by our team with SC-ECR at Michigan State University (1993-96) and with SERSE at LNS (1998-2000) at variable frequency from 2.45 to 28 GHz. These guidelines have been commonly accepted and for many years the use of larger microwave frequency and the use of "brute force", by increasing the power above 1 kW/liter has been sufficient. 11:5

The SERSE ion source at final location in LNS

SERSE typical currents at 18GHz (1997-2000)

06+	540	Kr22+	66	Au30+	20
07+	208	Kr25+	35	Au31+	17
08+	62	Kr27+	7.8	Au32+	14
Ar12+	200	Kr29+	1.4	Au33+	12
Ar14+	84	Kr31+	0.2	Au34+	8
Ar16+	21	Xe27+	78	Au35+	5.5
Ar17+	2.6	Xe30+	38.5	Au36+	2.5
Ar18+	0.4	Xe31+	23.5	Au38+	1.1
Kr17+	160	Xe33+	9.1	Au39+	0.7
Kr18+	137	Xe34+	5.2	Au40+	0.5
Kr19+	107	Xe36+	2	Au41+	0.35
Kr20+	74	Xe38+	0.9	Au42+	0.03

28 GHz operations 1µA Xe42+, 8 µA Xe38+, 100 µA Xe30+

28 GHz tests with SERSE

<u>S. Gammino, G. Ciavola, L. Celona, D. Hitz, A. Girard, G. Melin, Operation of the SERSE superconducting electron cyclotron resonance ion source at 28 GHz, Rev. Sci. Instr., 72 (11) 4090</u>

\mathbf{N}^{5+}	515	Ne ⁷⁺	230	Ar ¹⁶⁺	2
N ⁶⁺	160	Ne ⁸⁺	170	Ca ¹²⁺	52
$^{15}N^{7+}$	25	Ne ⁹⁺	14	Ni ¹⁷⁺	18
O ⁶⁺	720	Ar ¹¹⁺	120	Kr ²⁸⁺	1
O ⁷⁺	105	Ar ¹⁴⁺	10	Ta ²⁷⁺	10

Operating frequency	14 GHz
Maximum radial field on the wall	1.1 T
Maximum axial field (injection)	1.58 T
Maximum axial field (extraction)	1.35 T
Minimum axial field	0.4 T
Hexapole	NdFeB made 1.1 T
Extraction system	Accel-decel, 30 kV/12 kV max
Plasma chamber	St. steel or Al made

State of the art of 3rd generation ECRIS

	VENUS	SECRAL	A-PHOENIX	SuSI	RIKEN	MS-ECRIS
B _{radial}	2.1 T	2.0 T	1.6 – 2.2 T	2.0 T	2.0 T	2.7 T
B _{axial}	4.0 T	3.6 T	3.0 T	3.6 T	4.0 T	4.5 T
RF	28 GHz	18-28 GHz	18-28 GHz	24 GHz	28 GHz	28-37 GHz
V _{ext}	20 kV	20-30 kV	60 kV	60 kV	30 kV	40-60 kV
$\phi_{chamber}$	150 mm	126 mm	70 mm	100 mm	150 mm	180 mm

Different 3rd generation ECRIS have been built and excellent results have been obtained, according to the standard model for ECR ion sources but it is clear that to produce still higher intensity beams of highly charged ions, we need to find something else: RF equipment are too expensive and magnets technology is at its maximum.

For any kind of ion species, ECRIS have increased the current with a rate close to one order of magnitude per decade

Question:

May we maintain this trend for the next decades ?

Scaling to 3rd and 4th generation ECRIS

If we consider a simple scaling law for the magnetic field and frequency, we obtain 3-5 T for the 3rd generation ECRIS and 28-37 GHz operational frequency; 6-8 T for the 4th generation and 56-75 GHz frequency.

The former case is still within the existing technology of magnets and RF generators.

The latter case it is not for the magnets, as these field can be obtained only with Nb_3Sn magnets, but maybe it will be in the next decade (progresses are ongoing).

CONCLUSIONS

- The increase of magnetic field is close to saturation.
- If you find a wall, you should dig a hole below it!
- The "hole" in our case (we will see in the next slides) is an appropriate microwave generator and injector
- Plasma diagnostics and modeling are essential to fulfill the microwave coupling optimization.
- There is room for improvements of the existing sources and large possibilities for the future ECRIS.

Investment

Any equity fund would invest in a tool that increases the asset by a factor 5 or 10 per decade...

The investment in ECRIS has been rewarding in 1983-2013.

Why not to continue to invest?

Some experimental 'strange' data

A. Galatà, MSc. Thesis (Oct. 2003)

Supernanogan

CNAO layout Shielding fence

Sources for the CNAO hadrotherapy centre

 H_3 + : the current that could be guaranteed by the company was lower than requested (600 vs 700 μ A), but thanks to our suggestions (in particular the frequency tuning), the current of 700 μ A can be guaranteed and 900 μ A - 1100 μ A can be obtained.

Frequency tuning: easy to be implemented

Similar gain was obtained for C4+, from 200 μ A to 255 μ A

Frequency tuning @ GSI

Central operating frequency: 14.5 GHz

Frequency sweep: ±40 MHz (klystron frequency range)

Sweeping time: 150 sec

Optimization of the RF energy transfer

1. Defined modes exist in the plasma chamber;

2. Differences about the microwave coupling are evident for the two MW ports.

Ion Dynamics and Beam Formation

The plasma dynamics affects heavily the beam emittance

1) Optimal Source performances: Higly Charged ions concentrated in the center of the extracted beam

Bad Source performances: ion scattering injects lowly charged ions in the loss cone. The beam periphery is populated by LCI

[D. Mascali et al. *Plasma ion dynamics and beam formation in Electron Cyclotron Resonance Ion Sources*, submitted to Rev. Sci. Instrum.]

Evidences

- The microwave coupling to plasma cannot be managed in terms of 'brute force'.
- The position of the waveguide and the matching give different results either in terms of available beam current and (more important) in terms of beam emittance.
- To have bright beams, we need to optimize the microwave coupling, not to increase the power.

Relationship between the electron energy and the magnetic field gradient

The electron energy is inversely proportional to the magnetic gradient intensity BUT High Gradients mean better confinement

Hence a compromise has to be reached exploiting the RF energy transfer to the electrons.

INFN

Hiah Enerav Electrons (up to 2 MeV)

Evidences

- Sometimes the small changes of magnetic field have remarkable effects on charge state distribution.
- Sometimes the small changes of magnetic field have remarkable effects on X-ray production.
- There is a threshold for the non-linear effects? Other heating scheme are triggered?

In some conditions slight variations of L are critical for hard-X rays generation (exp. with CAESAR)

NFN

By changing the characteristic length of the mirror trap, L, of just 4mm, we obtained a completely different X-ray spectrum.

	L [mm]	l [mm]	Wb [keV]	Dvv [a.u.]	T ^{spec} [keV]	Ef [keV]
B1	60	30	300	100	35	300
B2	64	34	350	105	100	530

In case of turbulent heating induced by mode conversion

The electrostatic modes, generated at the ECR or/and at the UHR, give small kicks to the bouncing electrons, thus providing an additional randomization of the wave-particle phase!!!

OVERHEATING AND GENERATION OF SUPRATHERMAL ELECTRONS

Hard X-rays appearently depend on B field detuning

We succeeded in damping hot electrons by launching auxiliary electrons inside the plasma

INFN

Twin guns placed on the injection waveguide: field emission effect at electric field *E*>2-3 V/μm

 $j^{e}_{cvr} \sim 1 \div 10 \text{ mA/cm}^2$ For an emission surface of 0.12 cm² . *j* drastically grows with V_{bias} .

Electron gun made of a CNTs cathode obtained over a 300 μ m thick silicon substrate, a 150 μ m thick mica spacer and an anodic copper grid with quad cells of 350 μ m side

Measurements of plasma axially emitted X-rays were carried out by using a high purity Ge detector, collimated through lead blocks with a hole of 1 mm²

An experiment for damping of hot electrons: Simulation of electrons injection into the plasma chamber

The CNT guns where placed outside the threecusps star intercepted by the field lines over the injection endplate

Electrons are guided by the B field over the lateral chamber walls

In a magnetized plasma the diffusion is anisotropic and proceeds according to the Simon mechanism: the charge compensation for quasi-neutrality takes place globally and not locally.

$$I_{\perp}^{i} + I_{bd}^{i} + I_{X}^{i} + I_{bdR}^{i} + I_{bd}^{e} + I_{X}^{e} + I_{bdR}^{e} + I_{drain}^{e} = 0$$

6

An experiment for damping of hot electrons: Results and interpretation

INFN

The experiment demonstrate that the influence of B field is only indirect: the density was changed by CNT electrons and this affected the hot electron production.

The source performances also increased considerably!!

[D. Mascali et al., in preparation for Physical Review Letters]

HYPOTHESIS: mode conversion at UHR

A new heating mechanism based on EBW and role of turbulences in determining beam quality

QUESTION: may we transform a problem in resource?

Generation of extremely overdense @3.76 GHz plasmas through EBW-heating in flat-B-field devices

| **N F N**

Generation of extremely overdense plasmas through EBW-heating in flat-B-field devices

[D. Mascali et al. Nuclear Instruments and Methods A

INFN' Under-resonance discharge on VIS proton source

EBW heating produces high energy electrons even at low RF power. But EBW also cause IAW generation and following ion heating: the emittance grows when turbulences are activated.
NEXT: Understanding by means of two sources

CThe first one with Simple Mirror magnetic configuration exploiting OXB ignition mechanism

f <10 GHz, P=0.5-5 kW

n=10¹³ cm⁻³

T=0.5-20 keV

<q>=1-3

The second one based on ECR-heating and B-min structure for producing stabilized plasma (MHD stability ensured) of multi-charged ions

f=18-24 GHz, P=2.5 kW

n=10¹³ cm⁻³

T=10-200 keV

<q> above 20

PLASMA TRAP with versatile B-field

Investigation of EBW-heating under different magnetic field configurations

Parallel and perpendicular launching of EM waves

The new plasma trap has been designed as test-bench for plasma diagnostics and EBW-heating at 5-10 GHz:

X-ray imaging B-field LP measurements magnets and structure RF diagnostics (spectral analysis)

Materiali	Composizione della I parte della shell esterna dell'esapolo												
Vacodym 688 TP		11.01	5-7		1		17-19			1.01	29-31	-	-
Vacodym 669 TP		4		8		16		20		28	11.11.1	32	
Vacodym 745 HR	0-3				9-15				21-27	11.1			33-35
			Con	posiz	tione dell	a II p	arte della	a shel	l esterna	dell'e	sapolo		
Vacodym 677 HR	0-1	1.00	-		11-13				23-25			1	35
Vacodym 655 HR		2		10		14		22		26		34	
Vacodym 745 HR			3.9				15-21				27-33	1.0	

Tabella 6 - Composizione della shell esterna dell'esapolo

Settori				Direzione di magnetizzazione		
0	9	18	27	0		
1	10	19	28	40		
2	11	20	29	80		
3	12	21	30	120		
4	13	22	31	160		
5	14	23	32	200		
6	15	24	33	240		
7	16	25	34	280		
8	17	26	35	320		

UNCODYN KAN TR

Axial magnetic confinement

	INJECTION	MEDIUM 1	MEDIUM 2	EXTRACTION
Inner diameter	120 mm	120 mm	120 mm	120 mm
Outer diameter	160 mm	160 mm	160 mm	160 mm
Length	100 mm	30 mm	30 mm	90 mm
Current density	155 A/mm ²	-110 A/mm ²	-110 A/mm ²	-110 A/mm ²

Injection system

Three electrodes extraction system

INFN

<u>C4+ (600μA) geometrical emittance: 170 π mm mrad</u>

Improvements for monocharged ion sources ?

Microwave discharge ion sources

- Intense proton beams generation for next generation RIB facilities, ADS plants and other HPPA (e.g. >30 mA proton with reliability close to 100%)
- Intense deuteron beams production for IFMIF (e.g. 125mA of D⁺)
- > High efficiency 1+ ionization of recoils produced in TIS complex of radioactive facilities

INFN

TRIPS (*TRasco* Intense Proton Source)

Proton beam current: 60 mA dcBeam Energy: 80 keVBeam emittance: $\varepsilon_{RMS} \leq 0.12 \pi \text{ mm}$ mrad Reliability: close to 100%

INFN

INFN

Parameter	
Extractionvoltage	<u>80 kV</u>
<u>Pullervoltage</u>	<u>42 kV</u>
<u>Repeller voltage</u>	<u>-2.6 kV</u>
Dischargepower	<u>435 W</u>
Beam current	<u>35 mA</u>
Mass flow	<u>≈0.5 scc</u>

TRIPS operating parameters

	Requirement	Status
Beam energy	80 keV	80 keV
Proton current	35 mA	55 mA
Proton fraction	>70%	80% at 800 W RF power
RF power, Frequency	2 kW (max) @2.45 GHz	Up to 1 kW @ 2.45 GHz
Axial magnetic field	875-1000 G	875-1000 G
Duty factor	100% (dc)	100% (dc)
Extraction aperture	8 mm	6 mm
Reliability	»100%	99.8% @ 35mA (over 142 h)
Beam emittance at RFQ entrance	£0.2 pmmmrad	0.07 . 0.20 Pmmmrad

11/11/05 TRIPS moved to LNL

Microwave injection and beam extraction optimisation

L.Celona, G. Ciavola, S. Gammino, R. Gobin, R. Ferdinand, Rev.Sci.Instr. 71(2),(2000), 771

VIS-Versatile Ion Source (2008)

MDIS

• TRIPS & VIS sources, along with SILHI, the IFMIF source and the MDIS of Beijing built by S. Peng following the suggestion of CEA and INFN people, represent the state of the art. Anyway significant step forwards may be expected by including the know-how above described also in MDIS design

Energy

Beamh cunrent eliverables are the accelerating 62 ma make up the entire accelerator.

2.0 GeV

Average beam power Accelerator length Pulse length Repetition(nate Max cavity(field

Reliability (4 tanks)

- Spoke SCRF (14)
- Medium Beta SCRF (15)
- High Beta SCRF (30)
 - HEBT

DE nower (105 Klystrone, 225 Medulatore, 20 LIV/DC supply, 2 solid state amplifiare, 20

62.5 mAmake up the entire acce 5 MW about 600 m 2.86 ms 14 Hz 40 MV/m > 95%

91

Low energy beam transfer line (LEBT)

INFN

ISODAR

• For the ISODAR design a H_2^+ source is needed, which may be similar to VIS one, but it may be defined after the PS-ESS design will be optimized. The ideal field for H_2^+ optimization will be used to drive the design of a permanent magnet source similar to VIS.

Ion sources R&D Team

- S. Gammino
- L. Celona
- G. Ciavola
- L. Andò
- S. Manciagli
- C. Altana
- A. Gozzo
- L. Lega
- P. Romano
- **G. Vecchio**

- D. Mascali
- L. Neri
- G. Castro
- F. Di Bartolo
- F. Maimone (now at GSI
 Darmstadt)
 R. Miracoli (now at ESS-Bilbao)
 N. Gambino (now at ETH-Zurich)
 C. Caliri (now at Columbia, NY)