3D Equilibrium Reconstruction for **Stellarators and Tokamaks**

Samuel A. Lazerson¹

D. Gates¹, N. Pablant¹, J. Geiger², Y. Suzuki³, T. Strait⁴

[1] Princeton Plasma Physics Laboratory [2] Institute for Plasma Physics [3] National Institute for Fusion Science

[4] General Atomics

Accurate modeling of experimental conditions requires 3D equilibrium reconstruction

- Three-dimensional equilibrium effects are significant for both stellarators and tokamaks
 - Internal Helical States
 - RMP Application
 - Error Fields
- Bootstrap current and finite beta effects are significant for stellarators
 - Measurement and control will be an issue for diverter design

Outline

- What is equilibrium reconstruction?
- What tools do we use?
- Examples
 - LHD stellarator reconstruction
 - DIII-D 3D tokamak reconstruction
 - W7-X forward modeling for stellarators
 - ITER forward modeling for 3D tokamaks
- Concluding remarks

What is equilibrium reconstruction?

It is the goal of equilibrium reconstruction to fit an equilibrium model to a set of experimental measurements within defined error bars.

- Profiles (Ne, Te, Ti, etc.)
- External Magnetics
- Plasma Shape

"Remember that all models are wrong; the practical question is how wrong do they have to be to not be useful?"

- George E.P. Box

Schematically what are we doing?

What do we need to consider before we start?

- What are we measuring?
- Do these measurements constrain our equilibrium model or any model?
- Is there a simpler equilibrium model?
- Is the equilibrium model robust?

How do we fit the equilibrium to data?

- Direct data interpretation
 - Robust but often impossible
- Searching Methods
 - Versatile but can be misled by bad data
- Statistical Methods
 - Most robust but difficult to implement

How do we fit the equilibrium to data?

- Searching Methods
 - Versatile but can be misled by bad data

Equilibrium Reconstruction as Curve Fitting

Equilibrium is defined by a set of input parameters (p0).

Reconstruction seeks to find a perturbation to those parameters (h) which provides a set of input parameters (pf) which are a better fit to experimental measurements.

$$\vec{p}_f = \vec{p}_0 + \vec{h}$$

The quality of the set of a set of inputs (p) is evaluated by $\chi^{2}(\vec{p}) = \sum \left| \frac{\vec{y}_{target} - \vec{y}(\vec{p})}{\vec{\sigma}_{target}} \right|^{2}$

The Levenberg-Marquardt method is used to find (h)

$$\vec{h}_{LEV-MAR} = [\tilde{J}^{\dagger} \tilde{W} \tilde{J} + \lambda diag(\tilde{J}^{\dagger} \tilde{W} \tilde{J})]^{-1} \tilde{J}^{\dagger} \tilde{W} (\vec{y}_{target} - \vec{y} (\vec{p}))$$

$$\uparrow$$
Jacobian
Weight Matrix

STELLOPT fits parameters using various elements

- Equilibrium Model: VMEC
 - Stepped Pressure Equilibrium Code (SPEC) under development
- Fitting Method: Levenberg-Marquardt
- Synthetic Diagnostics:
 - Magnetics
 - Charge Exchange
 - Motional Stark Effect
 - Thomson Scattering
 - Interferometry

VMEC provides a 3D equilibrium model

- Ideal 3D MHD equilibrium model
- Constraint of nested flux surfaces

$$W = \int \left(\frac{|B|^2}{2\mu_0} + \frac{p}{\gamma - 1} \right) d^3 x$$
$$\vec{J} \times \vec{B} - \nabla p = 0$$

Free boundary W7-X equilibria as calculated by VMEC

DIAGNO2 calculates magnetic diagnostic response using the virtual casing principle in 3D

- Utilizes virtual casing principle (Shafranov et al.)
 - Surface integral is fast to compute
 - B on a surface is general (no code dependence)
- Calculates diagnostic responses

Surface Representation

$$\hat{n} \times \left(\vec{B}_{out} - \vec{B}_{in}\right) = \mu_0 \vec{K}_{surf}$$
$$\left(\vec{B}_{out} - \vec{B}_{in}\right) \cdot \hat{n} = \mu_0 \sigma_{dipole}$$

External Fields

$$\vec{B}(\vec{x}) = \frac{\mu_0}{4\pi} \int \frac{\vec{K}' \times (\vec{x} - \vec{x}')}{|\vec{x} - \vec{x}'|^3} dA' + \frac{\mu_0}{4\pi} \int \frac{\sigma'_{dipole}(\vec{x} - \vec{x}')}{|\vec{x} - \vec{x}'|^3} dA'$$

H.J Gardner, Nuclear Fusion 30 1417-1424 (1990) M. Drevlak et al. Nuclear Fusion 45 (2005)

S. Lazerson et al., Plasma Phys. Control. Fusion 55 025014 (http://dx.doi.org/10.1088/0741-3335/54/12/122002)

STELLOPT optimizes VMEC input parameters to match experimental measures

- •Algorithms
 - •Levenberg-Marquadt
 - Differential Evolution
 - •Particle Swarm
 - Mapping

•Features

- •MPI Parallelization
- Modular Target Functionals
- Various profile parameterizations

$$\chi^{2}(\vec{p}) = \sum \left| \frac{\vec{y}_{target} - \vec{y}(\vec{p})}{\vec{\sigma}_{target}} \right|^{2}$$

Variables (p)	Targets (y_target)
Enclosed Flux	Flux Loops
Toroidal Current	Magnetic Probes
Pressure Scaling	Thomson (Te, Ne)
Te Profile	Charge Exchange (Ti)
Ne Profile	Line Integrated Density
Ti Profile	Motional Stark Effect
Current Profile	Vacuum Field
Vacuum Fields	Toroidal Current

PPPl

Species profiles parameterize pressure profile

 STELLOPT parameterizes temperature and density as flux surface functions

$$p(s) = n_e(s)k_B[T_e(s) + T_i(s)]$$
 s: normalized toroidal flux

- VMEC profile parameterizations are implemented
 - Power Series, Two Power, Spline, Akima Spline, Two Lorentz, Pedestal, etc.

Current density divided into edge and core profiles

 Current density may also be treated as a sum of two currents

Present 3D reconstruction efforts

- <u>STELLOPT</u>
 - W7-AS, <u>LHD</u>, <u>DIII-D</u>, <u>W7-X</u>, <u>ITER</u>, NSTX
- V3FIT
 - CTH, HSX, RFX, DIII-D, MAST, JET

The Large Helical Device requires a 3D reconstruction capability

• Finite beta effects, beam driven current drive, and island healing modify the equilibrium away from vacuum configuration.

Thomson

Magnetics

Interferrometry

MSE

LHD has a significant axis shift at finite beta

LHD Flux Surfaces (shot: 85384)

DDD

Thomson-Vacuum mismatch highlights need for 3D reconstruction

LHD reconstruction work is ongoing

- Have identified need for equilibrium reconstruction and has been incorporated into transport analysis codes (TASK3D)
- Actively used for XICS data inversion
- Implementation of MSE and Ti measurements allow usage on modern Tokamaks such as DIII-D

STELLOPT is being applied to 3D Tokamaks

- A double null shot was conducted on DIII-D for use in stellarator codes (up/down symmetry constraint)
 - n=3 RMPs applied
 - No ELM suppression
- 3D equilibrium reconstructions provide accurate models of the plasma response as measured in the experiment

EFIT Reconstruction

The DIII-D diagnostics constrain 3D equilibrium

- •Measurements
 - •B-Probes (74)
 - •Flux Loops (104)
 - •Rogowski (I)
 - Interferometer (4)
 - •Thomson (36)
 - •CXRS (17)
 - •MSE (32)

DIII-D non-axisymmetric flux loops, Thomson (red), and charge exchange (CXRS, blue)

VMEC boundary compares well with EFIT q profiles agree well

VMEC boundary compares well with EFIT q profiles agree well

PPP

VMEC boundary compares well with EFIT q profiles agree well

VMEC boundary compares well with EFIT q profiles agree well

RMP effects are evaluated through 3D reconstruction

•+/- 3mm Boundary variation agrees with M3D-C1

Magnetic field probes indicate largest discrepancy near diverter region

- •Overall good agreement with B-Field Probes
- Diverter errors associated with representation

Flux loops show relatively good agreement

- Axisymmetric flux loops show similar agreement
- Non-axisymmetric loops lack C-Coil response

Profile fits attributed flattening to electrons

- Te temperature pedestal
- Ti temperature data lacking at edge

Electron density reconstruction indicates a flat profile

- Line integrate densities are well matched
- Ne relatively flat with some edge structure

MSE constrains bulk current profile

•Only 3 data points constrain edge bootstrap

DD

DIII-D 3D reconstructions provide useful analysis

- Provides accurate 3D model for more advanced codes (SPEC, etc)
- Stellarator symmetry constraint in STELLOPT has now been relaxed
- Focus is now shifting back towards stellarators and W7-X

STELLOPT modeling of W7-X has begun

- The W7-X device utilizes an island diverter which requires current profile control
- Forward modeling is being utilized to asses role of magnetic diagnostics in diverter control
- Simulated data being utilized to test equilibrium reconstruction capability

W7-X diagnostics constrain equilibrium

- Flux Loops (8)
- Diamagnetic Loops (2)
- Seg.Rogowski Coils (38)
- Interferrometry (1)
- Thomson Scattering (~100)
- XICS (under development)

Current magnetic diagnostics on W7-X may not be adequate

- Mapping of toroidal current, pressure scaling, pressure profile, current profile
- Segmented Rogowski's now included

Current magnetic diagnostics on W7-X may not be adequate

- Mapping of toroidal current, pressure scaling, pressure profile, current profile
- Segmented

PP

Inclusion of Thomson data allows for accurate reconstructions

Work is ongoing for W7-X

- Full equilibrium reconstruction will take advantage of all measurements
- Magnetics alone do constrain stored energy and toroidal current
- New magnetics are being explored for profile sensitivity
- SPEC modeling of W7-X is underway
- Forward modeling of ITER now possible

Forward modeling of ITER is now underway

- CORSICA modeling provides profile data
- VMEC is utilized to calculate 2D and 3D free boundary equilibria
- DIAGNO2 then used to forward model the magnetic diagnostic response

Boundary Displacements with ELM Coils (H-Mode)

In-Vessel Coil Scenario	Maximum Displacement
n=3 45 [kA-t]	0.84 [cm]
n=3 90 [kA-t]	I.36 [cm]
n=4 30 [kA-t]	0.36 [cm]
n=4 90 [kA-t]	I.66 [cm]

ITER Boundary Displacement (n=4 90[ka])

VMEC Resolution s=99,m=24,n=4

Work is underway to address the diagnostic response

- Large number of probes
- Clear response in axisymmetric flux loops when RMP's are applied to H-Mode plasmas
- Additional modeling necessary

ITER Saddle Loop Response (H-Mode)

DP

ITER Work is underway

- Analysis of diagnostic response for trial equilibrium has been conducted
- More sophisticated transport analysis is underway
- As-designed magnetics are being assessed for 3D fields
- SPEC modeling of ITER is underway

Future work

- NSTX EP H-Mode boundary discrepancy under investigation
- Additional diagnostics for W7-X under investigation
- IPECOPT under development for NSTX/U
 3D coil design

Thank you for listening!

