

High Frequency Gyrotrons and Their Applications

Richard Temkin

MIT Dept. of Physics and MIT Plasma Science and Fusion Center

Plasma Physics Colloquium Applied Physics and Applied Math Dept. Columbia University February 28, 2014

I Introduction to Gyrotrons

- Gyrotron Physics and Technology
- High Power Gyrotrons
- Applications

Gyrotrons

Updated from Granatstein et al. Proc. IEEE 1999

Gyrotron Concept

■ MW gyrotron for plasma heating and current drive

JAEA ITER 1 MW, 170 GHz gyrotron

K. Sakamoto et al., Nucl. Fus. (2009)

Electron Cyclotron Maser Dispersion Relation

■ Gyrotron is an electron cyclotron resonance maser

Waveguide Mode:

Gyrotron Devices

Topics

- Introduction to Gyrotrons
- **Gyrotron Physics and Technology**
- High Power Gyrotrons
- Applications

Electron Gun

Diode Magnetron Injection Gun for a 110 GHz Gyrotron

- Adiabatic compression of annular electron beam from the cathode to the resonator
 - Conservation of v_{Λ}^2 / B ; increase of v_{Λ}
- Low velocity spread required

Interaction Structure

- Open Resonator with cutoff towards the electron gun
- Beam radius is optimized to interact with the desired mode

High Order Modes

Optimal electron beam position

• There are 282 modes at lower frequency than the $TE_{22,6}$ mode!

Linear Theory: Starting Current and Mode Competition

Nonlinear Theory - Efficiency

Output Coupler

Mode Converter

 Internal Mode Converter (IMC) converts the cavity mode into a Gaussian Beam

 Launcher is a waveguide section with profiled walls designed to generate a mode mixture resulting in a Gaussian-like pattern on the surface

Launcher designed using code LOT

J. Neilson, JIMT (2006)

- Introduction to Gyrotrons
- Gyrotron Physics and Technology
- High Power Gyrotrons and Applications
 - Plasma Heating with Megawatt Gyrotrons
 - **Spectroscopy with THz Gyrotrons**
 - Materials Processing
 - Novel and Future Applications

Megawatt Gyrotrons

Шii

D-IIID 110 GHz ECH System

DIII-D Tokamak

• Corrugated aluminum transmission lines propagate HE₁₁ mode with low loss

J. Lohr, General Atomics, 2012

Megawatt Gyrotrons at DIII-D

• 1MW, 110 GHz gyrotron installed in SC Magnet

• 1.2 MW, 110 GHz Gyrotron

K. Felch, EPJ Conf. Web, 2012

W7-X Stellarator Germany

10 MW, 140 GHz ECH System

FZK, CRPP, THALES US/CPI (0.9 MW, 1800 s) (0.92 MW, 1800 s) (cryo-free magnets)

V. Erckmann, W7-X, 2012

ITER

ITER ECH System

M. Henderson, ITER, 2012

Low Loss Transmission Lines

- 24 MW of gyrotron power at 170 GHz; 20 MW at the plasma
 - Gyrotron Gaussian Beam mode purity >95%
 - Loss budget <17%
- 63.5 mm diameter corrugated Al waveguides transport the HE₁₁ mode
- Losses occur due to both ohmic loss and mode conversion loss to non-HE₁₁ modes
- US responsible for supplying the transmission lines

E. Kowalski, IEEE MTT, 2010M. Shapiro, FS&T, 2010D. Rasmussen, US ITER, 2012

170 GHz, 1 MW JAEA Gyrotron

Previous results

JAEA gyrotron

TE31,8 mode gyrotron

- 1MW/800s
- 0.8MW/1hr operation
- Max. efficiency: ~60%
- Total output energy: >250GJ

- Higher power
- Modulation
- Multi-frequnecy

K. Sakamoto, 2012

170 GHz, 1 MW Gyrotron - Russia

• TE_{25,10} Mode Gyrotron

Plii

- 70kV, 45 A
- 0.96 MW
- 55% efficiency
- 1000 seconds

G. Denisov, IVEC 2013

THz Gyrotrons

• High power at THz freq. is tens to hundreds of Watts

THz Gyrotrons for DNP/NMR

- Transfer of *e*⁻ spin polarization to nuclear spin polarization

DNP signal enhancement = 80

Frequency	140-600 GHz
Tuning range	~ 1 to 2 GHz
Power	10 – 100 W (CW)
Power stability	1% for 24 hours
Frequency stability	1 MHz

L. R. Becerra et al. Phys Rev Lett (1993)

250 GHz Gyrotron for DNP/NMR

- Dynamic Nuclear Polarization NMR yields signal increase up to 600!
- Gyrotron has 3 GHz tuning range

K. E. Kreischer et al., Proc. IR MM *Waves Conf.* (1999)

V. S. Bajaj et al., Journal of Magnetic Resonance Vol. 189 (2007)

1

Moving to Second Harmonic: 460 GHz Illi

- w@w_c second harmonic
- Gain ~ $(v_{\wedge} / c)^{2n}$
- $(v_{\wedge} / c)^2 = 0.04$ at 12 kV

M. K. Hornstein et al., IEEE Trans. Elec. Devices (2005) A. C. Torrezan et al. IEEE Trans. Plasma Sci. 2010

460 GHz gyrotron – Voltage Tuning Ilii

• Broadband frequency tuning @ 2W_c: 1 GHz

 $B_o = 8.43 \text{ T}, I_b = 100 \text{ mA}$

A. C. Torrezan et al. IEEE Trans. Plasma Sci. 2010

Gyrotron Stability

< 1 MHz

S-T Han et al., IEEE Trans Plasma Sci 2007

Bruker DNP/NMR Systems

263 GHz for 400 MHz NMR527 GHz for 800 MHz NMR

http://www.bruker.com/products/mr/nmr/dnp-nmr/overview.html

Materials Processing Gyrotrons

Illii

Materials Processing

- Non-contact, rapid heating of ceramics, glass, semiconductors
- Power ~ 1 20 kW
 - Frequencies ~ 24 to
 84 GHz
- Used with materials of low loss tangent at lower frequencies – power absorption increases with frequency
- Large scale applications?

CPI 28 GHz 10 kW Industrial Gyrotron Gycom 30 GHz Gyrotron and Applicator

Gyrotron Amplifiers

• Applications: radar, spectroscopy

Interaction Region

- Amplifiers have new physics challenges:
 - Instabilities; single pass gain; role of velocity spread

Ultra High Gain Gyro-TWT

- Instability stopped by highly lossy circuit
- 93 kW, 70 dB gain at 35 GHz, with 3 GHz Bandwidth

K. R. Chu et al, PRL (1998)

Gyrotron Amplifier Research at MIT

- High power microwave amplifiers for time-domain DNP NMR spectroscopy based on <u>novel structures</u>
- <u>140 GHz Gyrotron Amplifier</u> <u>Confocal Structure</u> 34 dB Gain, 820 W

250 GHz Gyrotron Amplifier Photonic Band Gap Structure 38 dB Gain, 45 W

TE₀₃-Like Mode

Defect region in photonic structure confines waveguide mode PBG Waveguide: TE₀₃-like Mode

Circular Waveguide: TE₀₃ Mode

Experimental Setup

Peak Power and Gain

- 7.5 mW Input Power (after isolator)
- 45 W Output Power
- 37.8 dB Gain (50 dB Circuit Gain)
- Bandwidth = 400 MHz, limited by input coupler

f = 247.7 GHz $V_k = 32 \text{ kV}$ $I_b = 0.345 \text{ A}$ $\alpha = 1.12$ $B_0 = 8.90 \text{ T}$

E. Nanni et al. Phys Rev Lett 2013

Novel Applications

Imaging and Inspection

- 200 400 GHz gyrotron radiation images material on a conveyor belt
 - Application to the food industry
- Metal or other foreign objects are identified

S-T Han, J. Phys. Soc. Korea 2012 S-T Han, IRMMW-THz Conf. 2011, 2012

MIT Study of Air Breakdown

Air breakdown using 1 MW, 110 GHz pulsed (3 ms) gyrotron

- 2D arrays, 50-100 filaments
- Quarter-wavelength separation
 - | /4 ~ 0.68 mm

Y. Hidaka, PRL, 2008 J. Hummelt, PoP, 2012

Radioactive Material Detection

- 210 kW, 670 GHz gyrotron built with a pulsed solenoid
- Remote detection of radioactive materials
- Seed electrons
 produced by
 radioactivity will allow
 air breakdown by the
 THz radiation, leading
 to detection

G. Nusinovich, JIMT, 2011 M. Glyavin, APL, 2012

Rocket Launcher

Beamed Energy Propulsion Concept

Lab test of rocket at JAEA by Univ. Tokyo team

J. Oda, JAEA, 2012

Rocket Launch – Artist's Concept, NASA A. Murakami, AIAA, 2012

Conclusions

- Gyrotrons are the most powerful sources of radiation in the millimeter wave and the Terahertz regions
- Gyrotron oscillators have three major applications
 - Plasma Heating
 - Materials Processing
 - Spectroscopy including DNP/NMR
- Gyrotron amplifiers are less well developed but have significant applications
 - Radar, Spectroscopy
- High power gyrotrons and applications have a promising future!

Acknowledgements

Research supported by:

National Institute of Biomedical Imaging and Bioengineering

MIT Plasma Science and Fusion Center, Waves and Beams Division

