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e Introduction and Motivation

— What do we mean by 3D magnetic fields, and why are they important?
« The HBT-EP Device

— Detection of natural plasma modes

— Active driving of plasma with external fields, and detection of the plasma
response

e Summary
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Fusion-relevant plasmas are confined magnetically HBBEP

To achieve the conditions necessary for fusion, extremely hot plasmas (~108K) must
be confined. This requires magnetic confinement

A tokamak is a toroidal confinement geometry characterized by helical magnetic
fields created by a combination of external coils and self-generated fields from
plasma current

The tokamak is an axisymmetric 2D configuration.
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Because of its early success, the tokamak is currently the most actively studied
confinement concept.



At high beta, tokamak plasmas can spontaneously become 3D HBBEP

When the beta (plasma pressure normalized to magnetic pressure) exceeds a
critical value, an external kink instability appears, and the plasma becomes 3D
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» These perturbations grow exponentially, and often lead to a catastrophic loss of
confinement, known as a disruption

» The kink mode can be feedback stabilized by applying an external field of
appropriate structure, amplitude, and phase

» The external kink mode places the most stringent beta limit on tokamak plasmas,
thus understanding kink mode physics is crucial to the success of a tokamak
reactor!



3D fields can also prevent instabilities HBTEP

In many machines, an instability
called the edge localized mode
(ELM) causes periodic bursts of
energy release resulting in
excessive heat loads to
components

One possible method of ELM
control is the application of 3D
fields to keep the plasma away
from the stability limits

The physics of ELM control with

magnetic perturbations is not fully

understood!

JET#69557

Wald

0.0 [—
E 'EFCC
-0.5E

ot "M Field off

Centre
88 = 20ge 3
eof PDa ) Y 3
4.0F 3
2.0F 3
0.0 L =

14 16 18 20 22 24
Times (s)

Y.Liang et al., PPCF 2007



Motivation: 3D effects play a crucial role in expanding tokamak

operating space

Understanding of 3D effects allows extension of tokamak operating space
and leads to higher performance plasmas
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“Fusion research has increased
key fusion plasma performance
parameters by a factor of
10,000 over 50 years; research
Is now less than a factor of 10
away from producing the core
of a fusion power plant.” —ITER
Organization

The physics of plasma interaction with 3D fields is an active area of

theoretical and experimental research worldwide!



Outline

« The HBT-EP Device
— Detection of natural plasma modes
— Active driving of plasma response by applying external fields



HBT-EP studies the physics and control of beta-limiting instabilities
such as the external kink

Typical Parameters

Major Radius: 92cm Electron Temperature: 100-150eV (~106K)
Toroidal Field: 0.33T Densities: 10°m-3
Plasma Current: 10-15kA Pulse Length: 10ms



HBT-EP is designed for detailed measurements of 3D effects

3 sets of 40 control coils
for modularity tests

High-resolution poloidal and radial
magnetic field sensors

20 adjustable
40 poloidal + 40 radial field sensors wall segments
for active feedback

 The modular control coils and large number of magnetic sensors
allows the high-resolution, high-accuracy excitation and detection of
plasma response to 3D external fields
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Magnetic sensor arrays give detailed picture of the 3D fields HBBEP
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Magnetic sensor arrays give detailed picture of the 3D fields
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Magnetic sensor arrays give detailed picture of the 3D fields
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Magnetic sensor arrays give detailed picture of the 3D fields
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High-resolution measurements of natural fluctuations can be
decomposed into independent plasma modes

HBT-EP
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A rich spectrum of natural modes is observed from passive
measurements of HBT-EP plasmas
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e The dominant mode structure that we measure is a 3/1 helix, followed by a
6/2, and ?/3 helix at much lower amplitude. These are modes that
resonate with the helicity of the equilibrium field

 These are independently evolving modes which must be simultaneously
controlled in a feedback scheme! 16



Plasma can also be probed with an external magnetic perturbation

U
o

applied by control coils HBT-EP
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 We use a helical magnetic perturbation that reverses sign midway through the
pulse (a “phase-flip”)
« Allows easier detection of the plasma response over a slowly evolving equilibrium
17



Plasma response to aresonant phase-flip perturbation is easily
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Varying the applied field spectrum demonstrates resonant

amplification HBT-EP
e The external field spectrum is continuously varied, with coil current in the i,jth
6"'|"'|"'|"'|III

O A Measured Plasma Response

N’ Applied Resonant Component

o

C

O

Q

wn

O

o

N

P

I

Il

C

~

S

 The plasma response is proportional to the amplitude of the resonant 3/1
component in the applied perturbation, even though the total field is constant.

 When the applied field is non-resonant, the plasma simply ignores the field!
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Plasma response increases dramatically as edge rotation is varied

with edge biasing HBT-EP
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Plasma helicity scan demonstrates resonance HBBEP
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 Plasma response measured as a function of the equilibrium field
helicity (edge q) shows a resonance near g=3

 In HBT-EP, edge q is essentially a measure of stability
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Three regimes of plasmaresponse observed as phase-flip amplitude

Is varied
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Three regimes of plasma
response are observed:

— |. Linear regime
— |I. Saturated regime
— |II. Disruptive regime (>30A)

Plasmas always disrupt for large
perturbations

The saturated regime is only
observed near resonance (q~3)

The slope of the linear response is
higher near q~3 (see g scan
results)
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Detailed g scan at two amplitudes confirm saturated response near

resonance HBT-EP
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« Away from resonance (g<2.85), doubling the perturbation doubles

the response, i.e. linear response

 Near resonance (q~3), the response remains the same, i.e.

saturation
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Detailed g scan at two amplitudes confirm saturated response near

resonance Hml’
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« Away from resonance (g<2.85), doubling the perturbation doubles
the response, i.e. linear response

 Near resonance (q~3), the response remains the same, i.e.
saturation
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Outline HBT-EP

e Summary
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Summary HBTEP

3D effects are important in expanding tokamak performance to the
levels required for a fusion reactor

HBT-EP is designed to clearly detect these effects, with
unprecedented detalil

Passive measurements of natural rotating modes shows a rich
spectrum of multiple independent modes

— This implies the need for “multimode control” in future fusion reactors

Probing the plasma with magnetic perturbations results in a large
resonant field amplification (RFA)

— RFA measured as a function of various plasma parameters provides
information about the plasma and its stability properties
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