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Outline

• Dipoles within the topological zoo

• The Collisionless Terella Experiment (CTX)

• Introduction of turbulence on CTX

• Turbulence, what is it? What does this mean?

•Modifying the turbulent spectrum

2

Friday, January 27, 2012



Magnetic Fusion Topology
• Most common magnetic geometries for 

plasma confinement employ magnetic 
surfaces

• the Tokamak is the most common and 
relies on the plasma current to create 
magnetic surfaces

• the Stellarator uses shaped magnetic 
coils to create magnetic surfaces, 
plasma current not necessary

• other options like the Reverse Field 
Pinch (RFP) or Field Reverse 
Configuration (FRC) also exist
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The Dipole Option
• Nature’s choice for magnetic 

confinement.

• The field created by a magnetic 
dipole is a purely poloidal. All field 
lines close on themselves, creating 
“flux tubes” or “flux ropes” rather 
than magnetic surfaces.

• This experimental geometry has 
several advantages including: great 
diagnostic access, simple coil design, 
the possibility of advanced fuels, and 
bi-dimensional (2D) physics
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Interchange Instability is the 
Primary Dipole Instability
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• Analogous to the gravitational Rayleigh-Taylor instability

• Similar to turning a cup of water upside down

• No field-aligned dynamics
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Creating Plasma on the 
Collisionless Terella Experiment

•Hydrogen plasma created 
with Electron Cyclotron 
Resonance Heating. 
(ECRH)  

•1.0kW of RF waves with 
f=2.45GHz injected.

•Bo=875G, resonance at 
L=27cm creates ring of 
deeply trapped, hot 
electrons.

•Base Vacuum Pressure ≈ 
1-2*10-7 Torr
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Diagnostics to Characterize 
Plasma Turbulence and Flow

• 3 Langmuir Probes

• Triple Probe Array 

• Isat Probe

• Bias Probe

• Equatorial Array

• 16 Point, 31 Tip 
Radial Transport 
Rake Probe Array

• Polar Imager (Array 
of 96 Gridded 
Energy Analyzers)
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Plasma Discharge Enters Turbulent 
Regime with Sufficient Fueling*

• Transition to high density 
turbulent regime at t = 0.2 s.

• Temperature drops an order of 
magnitude.

• The edge density increases to 
n~3-4×1015 m-3.

• Visible light increases dramatically 
and hard X-ray production 
decreases.
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Ensemble Spectra
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High Density Single Point 
Measurements Look Turbulent
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• After transition floating 
potential fluctuations 
exhibit broad power law 
spectrum.

• Two peaks observed at 
roughly 2 kHz and 
smaller peak at 4 kHz.
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What Does Turbulence 
Mean?

• Turbulence implies highly stochastic, nonlinear, multi-
scale dynamics

• Occurs in most flowing media: water, air, plasma 

• A quote attributed to British physicist Horace Lamb is, 
“I am an old man now, and when I die and go to heaven 
there are two matters on which I hope for some 
enlightenment.  One is quantum electrodynamics, and 
the the other is the turbulent motion of fluids.  And 
about the former I am rather optimistic.”
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Enstrophy plays a large factor in 
differences between 3D and 2D
• Enstrophy is the mean square 

vorticity.

• Not a conserved quantity in 3D 
b/c of vortex stretching. (think of 
water draining through a funnel)

• Conserved in 2D in the 
incompressible, inviscid limit.

• In the Fourier representation we 
can see the relationship between 
energy and enstrophy.

11

� =
� ∞

0
k2S(k)dk

E =
� ∞

0
S(k)dk

� = �ω2�

ω = ∇× �v

� = k2E

Friday, January 27, 2012



Implications of Enstrophy 
Conservation

• Let’s look at the 
effects this has with 
a simple example:
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CTX

Energy Injection

k1 k2 = 2k1 k3 = 3k1

Energy

Enstrophy

δE1 + δE2 + δE3 = 0

δ�1 + δ�2 + δ�3 = 0

k2
1δE1 + k2

2δE2 + k2
3δE3 = 0

=
�k1 + �k2 = �k3 |k1| < |k2| < |k3|,

Do the algebra...
δE1

δE3
=

5
3

δ�1
δ�3

=
5
27

Friday, January 27, 2012



This Creates a Dual Cascade
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Energy 
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• So we see as a result of 
reducing the 
dimensionality, we have 
another conserved 
quantity (enstrophy), 
which in turn creates dual 
cascades.

• Enstrophy exhibits a forward cascade from large to 
small spatial scales. (small to large k-values)  

• Energy has a backward cascade, the so-called inverse 
energy cascade, from small spatial scales to larger ones. 
(large to small k-values) k−5/3

k−3
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An Inverse Cascade Example in a 
2-D Kelvin-Helmholtz Simulation
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*A. Miura, PRL 83, 8 (1999)
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Are We Observing the 
Inverse Energy Cascade?
• We have reported that in the high density turbulent 

regime the observed fluctuations can be recreated 
through spatially broad and temporally chaotic 
signals*

• This is consistent with an inverse energy cascade 
(pooling at large spatial scales), but we aim to inject 
energy at finer scales and watch the spectrum evolve

• The goal is to experimentally verify the inverse 
energy cascade through application of an electrostatic 
perturbation
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*Grierson, et al.  Phys. Plasmas 16, 5 (2009)
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How can we most effectively 
couple to the plasma?

• Using a bias probe the data indicate the 
perturbation does modify the plasma. 
However, limited by a single probe and the 
amount of power that can be applied

• Increasing the probe area would allow more 
power to be applied

• Desire ability to control the shape of the 
perturbation through broader spatial coverage
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Equatorial Biasing Array

• Upgrade existing array 
and begin experiments

• Increase number of 
segments to twelve

• See symmetry breaking 
effect, m=0 has ~3x the 
current with 2x the 
number of meshes biased
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Driving Azimuthal vs. Radial Currents 
through Varied Mode Numbers

• When axisymmetry is broken currents can flow azimuthally in 
additional to radially

• Equatorial bias array designed to test mode numbers=0,1,2,3,6

Fun. Gen.

-
- -

Fun. Gen.

m=0 m=3
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Equatorial Bias Excites 
Quasi-Coherent Mode

• Shots similar before bias, but 
see the quasi-coherent mode 
when bias is applied

• 7254:High Density

• 7276: -500V m=6 bias 
triggered from .35 to .55s, full 
bias around .45s

Potential Power Spectra
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Mode Seen in Polar 
Imager Correlations
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Bias Increases Coherence 
in Potential Probes

• Unbiased shot displays decreased coherence length beyond 
dominant mode.

• Multiple modes present in shot with nonaxisymmetric bias.

• Increased coherence length evident through broad range of 
frequencies during bias.

Cross-Coherence
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Coherence of Primary Mode 
Increases During Bias
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• Strong azimuthal 
increase in 
coherence

• Coherence 
length also 
broadens radially
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Nonaxisymmetric Bias Excites 
Inverse Energy Cascade

• Floating potential spectra

• Structure of unbiased 
dominant mode m=3 
(not very coherent)

• Axisymmetric mode 
shows frequency upshift 

• Nonaxisymmetric bias 
displays clear excitation 
of lower mode numbers

• RMS unchanged by bias

m=1 modes m=2 modes
Power Spectra
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Potential Time 
Evolution During Bias

• We see frequency shift and 
mode amplitude jump after 
bias is triggered, and then 
decay once bias is removed

• Unbiased shots display a 
growing amplitude until 
saturates with slowing of 
principal mode (neutral drag)
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• Standard FFTs and 
Spectrograms employed.

• Bicoherence also useful in 
quantifying three-wave 
coupling within a signal.

Spectral Analysis Can Reveal 
Nonlinear Coupling of Scales

b̂2(ω1,ω2) =
|B̂(ω1,ω2)|2

| < Ŝ(ω1)Ŝ(ω2) > |2| < Ŝ(ω1 + ω2) > |2

< A >=
1
M
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S(t)→FFT→ Ŝ(ω)
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High Levels of 
Nonlinear Coupling in 
Nonaxisymmetric Bias
• Highest level of quadratic 

coupling see in m=6 bias shot

• See the coupling is very 
broadband across the 
spectrum

• Axisymmetric bias displays 
much lower coupling
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Nonlinear Coupling 
Increases During Bias
• Summed bicoherence shows the 

total amount of coupling at a 
specific frequency

• Shot 7873, m=6 bias

• See a large peak develop through 
bias and then relax to lower 
amplitude and higher frequency 
after bias removed

• Not seen in during axisymmetric 
bias or unbiased cases
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Conclusions
• Axisymmetric biasing drives the centrifugal 

interchange mode, even in a turbulent plasma.

• Electrostatic biasing increases coherence length and 
decreases broadband turbulent fluctuations.

• When nonaxisymmetric bias is applied, the evolution 
of the turbulent spectrum directly demonstrates the 
inverse energy cascade. This is the first 
demonstration of active bi-dimensional turbulence 
drive in a magnetized plasma.
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Thank You
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• Averaging the phases during the peaks in the 
coherence identified we can easily trace mode 
numbers.

• High density phase is less clear (corresponding 
to lower coherence), but see m=3 and m=4.  
The phase evolution of at these frequencies 
produces clear modes, unlike lower frequencies 
that are presumably m=1 and m=2 modes.

• In bias we can pick out modes m=1,2,3,4,5 with 
maybe a hint of 6

Clear identification of 
mode numbers during bias
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