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Qutline

® Dipoles within the topological zoo

® The Collisionless Terella Experiment (CTX)
® |ntroduction of turbulence on CTX

® Turbulence, what is it! What does this mean?

® Modifying the turbulent spectrum
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Magnetic Fusion Topology

® Most common magnetic geometries for
plasma confinement employ magnetic
surfaces

® the Tokamak is the most common and
relies on the plasma current to create
magnetic surfaces

® the Stellarator uses shaped magnetic
coils to create magnetic surfaces,
plasma current not necessary

® other options like the Reverse Field
Pinch (RFP) or Field Reverse
o Configuration (FRC) also exist
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The Dipole Option

® Nature’s choice for magnetic
confinement.

® The field created by a magnetic
dipole is a purely poloidal. All field
lines close on themselves, creating
“flux tubes” or “flux ropes” rather
than magnetic surfaces.

® This experimental geometry has
several advantages including: great
diagnostic access, simple coil design,
the possibility of advanced fuels, and
bi-dimensional (2D) physics
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Interchange Instability is the
Prlmary Dipole Instability

E1><BO E1><BQ

E1 X BO
® Analogous to the gravitational Rayleigh-Taylor instability
® Similar to turning a cup of water upside down

® No field-aligned dynamics
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Creating Plasma on the
Collisionless Terella Experiment
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*Hydrogen plasma created
with Electron Cyclotron

Resonance Heating.
(ECRH)

e | .OkWV of RF waves with
f=2.45GHz injected.

eB,=875G, resonance at
L=27cm creates ring of
deeply trapped, hot
electrons.

*Base Vacuum Pressure =
| -2%1 07 Torr
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Diagnostics to Characterize
Plasma Turbulence and Flow
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Plasma Discharge Enters Turbulent
Regime with Sufficient Fueling”

-4.6

® Transition to high density
turbulent regime at t = 0.2 s.

® Temperature drops an order of
magnitude.

® The edge density increases to
n~3-4x10'"> m-3,

® Visible light increases dramatically
and hard X-ray production

decreases.
“NL.A. Krall Phys. Fluids 9 (4)(1966)
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High Density Single Point
Measurements Look Turbulent

® After transition floating

Ensemble Spectra

10°% R
potential fluctuations N ] e
exhibit broad power law  _ 1o:f rouer o 500 e
?E ;Power Law: -4.68 R -
spectrum. 5 10°) ig
c§> - - 50
% 107
® Two peaks observed at . :
46
roughly 2 kHz and ol N )
smaller peak at 4 kHz. > Y requn .
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What Does lTurbulence
Mean!

® Turbulence implies highly stochastic, nonlinear, multi-
scale dynamics

® Occurs in most flowing media: water, air, plasma

® A quote attributed to British physicist Horace Lamb is,
“I am an old man now, and when | die and go to heaven
there are two matters on which | hope for some
enlightenment. One is quantum electrodynamics, and
the the other is the turbulent motion of fluids. And
about the former | am rather optimistic.”
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Enstrophy plays a large factor in
differences between 3D and 2D

® Enstrophy is the mean square
vorticity.

® Not a conserved quantity in 3D e — (w?)
b/c of vortex stretching. (think of

water draining through a funnel) . _ /OO S(k)dk
® Conserved in 2D in the )
incompressible, inviscid limit. ¢ — / k2S(k)dk
® |n the Fourier representation we ;
can see the relationship between
energy and enstrophy.
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Implications of Enstrophy
Conservation

® | et’s look at the ki 4 ko = kq k1| < |ka| < |ks)
effects this has with

a simple example: 0F1 + 0F3 +0F3 =0

0€1 + 0€o + ez = 0

(:::I Energy = |

2 2 2
<i‘,=|Enstrophy|:::> kioE1 + k30Eo + k30FE3 = 0

Go-E

k1 ko = 2k
Energy Injection 0L3 3

Do the algebra...
5E1 5 561 3!

Sea 27
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This Creates a Dual Cascade

3D D ® So we see as a result of

log(Ek) log(Ek%k — reducing the
e dimensionality, we have
another conserved

Ep ~k™?
N\ %z quantity (enstrophy),
- log (k) ' log(k) which in turn creates dual
k, ka ki kg

cascades.

® Enstrophy exhibits a forward cascade from large to
small spatial scales. (small to large k-values) k£~ °

® Energy has a backward cascade, the so-called inverse
energy cascade, from small spatial scales to larger ones.
(large to small k-values) k—5/3
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An Inverse Cascade Example in a
2-D Kelvin-Helmholtz Simulation

*A.Miura, PRL 83,8 (1999) . ,’ pion
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Are We Observing the
Inverse Energy Cascade?

® We have reported that in the high density turbulent
regime the observed fluctuations can be recreated

through spatially broad and temporally chaotic
signals™

® This is consistent with an inverse energy cascade

(pooling at large spatial scales), but we aim to inject
energy at finer scales and watch the spectrum evolve

® The goal is to experimentally verify the inverse

energy cascade through application of an electrostatic
perturbation

*Grierson, et al. Phys. Plasmas 16, 5 (2009)
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How can we most effectively
couple to the plasma?

® Using a bias probe the data indicate the
perturbation does modify the plasma.
However, limited by a single probe and the
amount of power that can be applied

® Increasing the probe area would allow more
power to be applied

® Desire ability to control the shape of the
perturbation through broader spatial coverage
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Equatorial Biasing Array

® Upgrade existing array
and begin experiments

® |ncrease number of
segments to twelve

® See symmetry breaking
effect, m=0 has ~3x the
current with 2x the
number of meshes biased
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Driving Azimuthal vs. Radial Currents
through Varied Mode Numbers

® When axisymmetry is broken currents can flow azimuthally in
additional to radially

® Equatorial bias array designed to test mode numbers=0,1,2,3,6

[ Fun. Gen.j—D [Fun. GenJ—D
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Equatorial Bias Excites
Qua5| Coherent Mode

Potential Power Spectra

Shot 7254
Shot 7276

m .25s to .35s

Shot 7254
Shot 7276

g 45s to .55s

0

20
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® Shots similar before bias, but
see the quasi-coherent mode
when bias is applied

® 7254:High Density

® /276:-500V m=6 bias
triggered from .35 to .55s, full
bias around .45s
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Mode Seen in Polar
Imager Correlations

Autocorrelations for Psi 4

Shot 7802

Start: 0.45 Stop: 0.55
A14_3_1:RAW 37 degrees
A14_4_3:RAW 70 degrees

A14_5_1:RAW 130 degrees

A14_11_5:RAW 277 degrees
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Autocorrelations for Psi 4
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Bias Increases Coherence
in Potential Probes

® Unbiased shot displays decreased coherence length beyond
dominant mode.

® Multiple modes present in shot with nhonaxisymmetric bias.

® |Increased coherence length evident through broad range of
frequencies during bias.
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Coherence of Primary Mode
Increases During Bias

Unbiased m=3 Bias -400V

® Strong azimuthal
Increase in
coherence

® (Coherence
length also

broadens radially

Reference Detector: A14_3_1:RAW Reference Detector: A14_3_1:RAW
Shot 7282 Start: 0.500000 Stop: 0.550000 Shot 7187 Start: 0.500000 Stop: 0.550000
Frequency Band=[4.30000,4.90000] Frequency Band=[3.10000,3.70000]
Coherence Coherence
0.00 0.25 0.50 0.75 1.00 0.00 0.25 0.50 0.75 1.00
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Nonaxisymmetric Bias Excites
Inverse Energy Cascade

® Floating potential spectra

m=| modes m=2 modes ® Structure of unbiased
Power Spectra

------------------- - dominant mode m=3

50 F =
= | (not very coherent)
- Start: 0.45 Stop: 0.55 ]
40 3 7871 m=6 E . .
; 7893 m=0 { ® Axisymmetric mode
) S0F E shows frequency upshift
08 o 1 ® Nonaxisymmetric bias
10_] [y W\\/ : displays clear excitation
: \ ]
BT VAN A of lower mode numbers
0 5 10 15 20 .
Frequency (kHz) ® RMS unchanged by bias
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Autocorrelations (Power Spectra)
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Potential Time
Evolution During Bias

‘Time ® We see frequency shift and

mode amplitude jump after
bias is triggered, and then
decay once bias is removed

® Unbiased shots display a
growing amplitude until
saturates with slowing of
principal mode (neutral drag)

m=| mode

m=2 mode
m=3 mode

24
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Spectral Analysis Can Reveal
Nonlinear Coupling of Scales

S(t) =rrr— S(w)
® Standard FFTs and Y
Spectrograms employed. <A>=g) A

® Bicoherence also useful in B e S8 s 4 o)
. wy) =< N
quantifying three-wave L w1)S(w2)S™ (w1 + wo

coupling within a signal. Blon,w)?

B2w,w = ~ ~ ~
(w1, w2) < 5(w1)S(wa) > 2] < S(wy + wa) > |2
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b2(f,,f,) WHERE b > var(b?)

High Levels of

Nonlinear Coupling in:
Nonaxisymmetric Bias

10 15
f, (kHz)

b2(f,,f,) WHERE b > var(b?)

o
(¢)]

® Highest level of quadratic :
coupling see in m=6 bias shot

f, (kHz)
o

® See the coupling is very
broadband across the ° N

b2(f,.f,) WHERE b® > var(b?)
spectrum

® Axisymmetric bias displays
much lower coupling

15

o
(63}
—_
o
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Summed Bicoherence (Normalized)

-------------------------------------------------

335 Nonlinear Coupling
. Increases During Bias

o ® Summed bicoherence shows the

= b¥(f, 1)

Frequnecy f;: f,=f,+f, (kHz)
o Summed Bicoherence (Normalized) ._: total amount of coupling at a
" 2 10 .535 specific frequency

2 bA(f,.f)

® Shot 7873, m=6 bias

1 @ Seealarge peak develop through
,,,,,,, Summod Booneronce (Nomalized) __ bias and then relax to lower

55 to 6 | amplitude and higher frequency
5 after bias removed

= b¥(f, 1)

® Not seen in during axisymmetric
bias or unbiased cases

m Frequnecy f,: f3=f1-f’f(2) (kHz) “
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Conclusions

® Axisymmetric biasing drives the centrifugal
interchange mode, even in a turbulent plasma.

® FElectrostatic biasing increases coherence length and
decreases broadband turbulent fluctuations.

® When nonaxisymmetric bias is applied, the evolution
of the turbulent spectrum directly demonstrates the
inverse energy cascade. This is the first
demonstration of active bi-dimensional turbulence
drive in 2 magnetized plasma.
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Thank You
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Clear identification of
mode numbers during bias ......s.m

A '
o s High Density
N 53010 5.55kHz M = 3
° Averaging the phases during the peaks in the 8
coherence identified we can easily trace mode 90|
numbers. A
-180 A . .
0 50 . 100 150
®  High density phase is less clear (corresponding Azimuthal Location
_ _ Average Phase for Shot 7817
to lower coherence), but see m=3 and m=4. 180 - -
The phase evolution of at these frequencies B
produces clear modes, unlike lower frequencies or g X 1aS
A UITTEIEEL
that are presumably m=1 and m=2 modes. AN S A p 1010 270kHs M = |
g o
° In bias we can pick out modes m=1,2,3,4,5 with 90|~
maybe a hint of 6 a0
0 50 100 150
Azimuthal Location
Average Phase for Shot 7817 Average Phase for Shot 7817
180 ' : 180 — -
A
90 A B|as — 90— A BIaS
N 9.30t010.10kHzm =5 | © (i 5.901t0 6.20kHz m = 3
Q A o}
) o
A
90 — 0
A
-180 = 1 1 1 -180 L L L
0 50 100 150 0 50 100 150
! Azimuthal Location Azimuthal Location
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