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Software Needs To Utilize Resources 

• Most HPC systems consist of many, many, many 

nodes networked together in a suitable topology 

• A node consists (most often) of multiple processors 

(sockets) that all have multiple cores 

• Utilizing only 1 MPI process per node utilizes only 

1 core of 1 processor   

• P-Threads/OpenMP designed for shared      

memory parallel programming,            

coordinating work intra-node 

Your basic desktop 

Your basic supercomputer 
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Communication Model 
• P-Threads provides 2 routines to inform 

waiting threads that the state of some shared 
data structure has changed 

 
• pthread_cond_broadcast awakens all the threads  

• initiates a 'thundering herd' all contending for the lock 

 

 

• pthread_cond_signal awakens only 1 thread waiting  

• Can specify which thread is to be awoken by using 

 a different condition variable for each thread 

 

• pthread_cond_wait causes the thread to unlock  

the held mutex and sleep AUTOMICALLY  

  

         

WAKE UP 

EVERYONE! 

… zzz ... 

… zzz ... 

… zzz ... 

… zzz ... 

WAKE 
UP! 

… zzz ... 

… zzz ... 

… zzz ... 

… zzz ... 
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The Track Race Analogy 

• Guy with the gun – the 'main' thread 

• Runners – the posix threads 

 

• The Event 

• All runners line up and get into position 

• The guy with the gun fires it off 

• Runners perform their task: run 

 

• How can the above procedure be accomplished in 

software? 
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• Common track race events include the 100m, 

200m, 400m, and 800m 

• Track race events in software we term thread 

kernels and include vector dot product, matrix-vector 

multiply, etc. 

• Just as the 100m takes less time to complete 

than the 800m, different thread kernels take 

different amounts of time to complete 

The Track Race Analogy Continued … 
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The Firing of the Starting Gun 

• In real life the Starter fires the gun, the 

runners all hear it simultaneously, and 

everyone starts running 

• The Starter firing the gun analogous to the 

'main' thread issuing a 

pthread_cond_broadcast instruction 
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Implicit Synchronization 

The Starter 

• Must ensure all the runners are lined up and 

in position 

 

• Must ensure all the runners have finished 

the race before commencing to set up a new 

race 

 

• Must collect race results (sometimes) 
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Implicit Synchronization 

The Runners 
• In real life, unless running a relay, runners 

are completely independent of one another 

• In software, a baton (mutex) enters 

• Depending on the implementation, threads may 

solely coordinate with the 'main' thread or could 

coordinate with                                           

multiple other threads 

• The need for runner                           

synchronization makes                           

thread pool use much                                 

less appealing  

mutex 
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Why can't all runners (threads) 

start simultaneously? 
• Associated with the pthread_cond_wait() is 

a condition variable AND a mutex 

• Any way that wake up & run can truly be 

simultaneous, not sequential? 

• NO!  Unlock and wait needs to be atomic 
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Thread Pool & Use 

• Collection of threads 

• Used often in producer/consumer model  

• Producer: add task to some shared data 

structure 

• Consumer: remove task from shared data 

structure and complete task 

• Lock must protect the shared data structure 

Remove 

Add 

Consumer Thread 

Producer Thread Queue of Tasks 
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Thread Pool Implementation in PETSc 

• Thread pools designed for programs 

comprised of many short tasks 

• Run time consists of combining 

computation and P-Thread overhead time 

• Small jobs can take longer using P-Threads 

due to (comparatively) large amount of time 

for thread creation 

• Thread creation occurs on startup, thread 

termination occurs at shutdown 
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Thread Pool Implementations 

“True Pool” 

Broadcast 

Signal 

Main 

Worker Pool 

• 1 mutex coordinates/synchronizes everyone 

• “Thundering herd” for mutex control 

• Last worker to finish signals Main 
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Thread Pool Implementations 

“Chain” 

• Explicit ordering of worker threads 

• Many mutexes, 1 for each worker 

• Sequentiality explicit 

Main 

0 

1 
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Signal 

“Get to Work” 

Signal 

“All Done” 

Signal 

“Wake Up” 
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Thread Pool Implementations 

“Dictatorship” 

• Many mutexes, 1 for each worker thread 

• Main sends signals sequentially 

• Each worker thread signals Main 

• Workers truly independent 

Main 

0 1 2 3 4 5 6 
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Thread Pool Implementations 

“Corporate” or “Tree” 

• Threads tell their subordinates to get to work 

• Subordinates inform their bosses that they're done 

• “Parallelization” of wake up procedure 

Main 

0 

1 

3 

2 

4 5 6 
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Threads And Core Affinity 

• Which core does Main run on?  Which do 

my threads run on? 

• Process-to-processor and thread-to-core 

mappings greatly affect performance 

• “Task mapping problem” heavily researched 

    AMD                      Intel 
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Parallel Performance 

• All tests conducted on MCS's                       

PETSC machine (see schematic) 

• What's the Bottleneck? 
• Compute bound: program execution time                                

determined by speed at which floating                                      point 

operations can be retired 

• Memory bound: program execution time determined by speed at 

which cores can obtain data from memory 

• Important questions to ask: 
• Can we double sequential performance by using 2 threads? 

• Can we quadruple sequential performance by using 4 threads? 

• Can we octuple sequential performance by using 8 threads? 

processor processor 

core 
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Sequential (Uni-core) 

Performance Hardware Limited 

• Argonne “PETSC” machine 
• 32KB L1 Data & Instruction 

• 6144KB L2 Unified 

• Working Set 
• Amount of physical memory                                                   

needed by program 

• As size increases, L2 cannot                                                        

hold it all and must utilize DRAM 
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Vector Dot Product Results  

Vector of Size 100,000 Elements 

• Sequential 

• Runs made using different cores 

• As expected, the particular core utilized did not 

make a difference 

• Results ranged from 1868 to 1983 Mflops/sec 

with 1960 Mflops/sec as the median 

• Thread Creation/Destruction (2 Threads) 

• Results varied widely between 860 to 1300 

Mflops/sec 

• Indicative of current inability to control where 

threads are placed 



20 

Thread Pool Vector Dot Product Results  

Vector of Size 100,000 Elements 

• Performance shows how much data 

movement matters 

Thread 0, Core 0; Thread 1, Core 4 Thread 0, Core 0; Thread 1, Core 1 Thread 0, Core 0; Thread 1, Core 2 
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Vector Norm Results  

Vector of Size 1,000,000 Elements 

• Sequential 

• Median of 850 Mflops/sec 

• Working set overflow of L2 means core has to 

wait for data to arrive from DRAM  

• Thread Creation/Destruction (2 Threads) 

• Comparable performance to sequential 
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Thread Pool Vector Norm Results  

Vector of Size 1,000,000 Elements 

 

Thread 0, Core 0; Thread 1, Core 4 Thread 0, Core 0; Thread 1, Core 1 Thread 0, Core 0; Thread 1, Core 2 
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Matrix-Vector Multiplication 

SNES ex19, dmmg_nlevels = 6 
• Sequential implementation sees 585 

Mflops/sec performance 
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