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Software Needs To Utilize Resources

« Most HPC systems consist of many, many, many
nodes networked together in a suitable topology

« A node consists (most often) of multiple processors
(sockets) that all have multiple cores

 Utilizing only 1 MPI process per node utilizes only
1 core of 1 processor

« P-Threads/OpenMP designed for shared
memory parallel programming, _ =1 ¥ H;
coordinating work intra-node P A"\ 1
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Your basic supercomputer

Your basic desktop 2



Communication Model
» P-Threads provides 2 routines to inform

walting threads that the state of some shared
data structure has changed
@[ WAKE UP }
EVERYONE!
pthread cond_broadcast awakens all the threads
* initiates a 'thundering herd' all contending for the lock j:
O r’@—
e«
- o O % .
pthread_cond_signal awakens only 1 thread waiting

» Can specify which thread is to be awoken by using
a different condition variable for each thread

... 277 ...

pthread _cond_wait causes the thread to unlock
the held mutex and sleep AUTOMICALLY



The Track Race Analogy

» Guy with the gun — the 'main’ thread
» Runners — the posix threads

* The Event
 All runners line up and get into position
» The guy with the gun fires it off
* Runners perform their task: run

« How can the above procedure be accomplished in
software?



The Track Race Analogy Continued ...

« Common track race events include the 100m,
200m, 400m, and 800m

» Track race events in software we term thread
kernels and include vector dot product, matrix-vector
multiply, etc.

« Just as the 100m takes less time to complete
than the 800m, different thread kernels take
different amounts of time to complete



The Firing of the Starting Gun

* |n real life the Starter fires the gun, the
runners all hear it simultaneously, and

everyone starts running
» The Starter firing the gun analogous to the

'main’ thread Issuing a
pthread cond_broadcast instruction




Implicit Synchronization
The Starter

« Must ensure all the runners are lined up and
In position et

o

» Must ensure all the runners have finished
the race before commencing to set up a new
race L

» Must collect race results (sometimes)



Implicit Synchronization

The Runners

* In real life, unless running a relay, runners
are completely independent of one another

 |n software, a baton (mutex) enters

» Depending on the implementation, threads may
solely coordinate with the 'main' thread or could
coordinate with
multiple other threads

* The need for runner
synchronization makes
thread pool use much
less appealing




Why can't all runners (threads)

start simultaneously?

 Assoclated with the pthread _cond_walt() IS
a condition variable AND a mutex

« Any way that wake up & run can truly be
simultaneous, not sequential?

« NO! Unlock and wait needs to be atomic



Thread Pool & Use

e Collection of threads

 Used often In producer/consumer model

e Producer: add task to some shared data
structure

e Consumer: remove task from shared data
structure and complete task

 Lock must protect the shared data structure
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/1{emove Queue of Tasks Producer Thread
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Consumer Thread




Thread Pool Implementation in PETSc

Thread pools designed for programs
comprised of many short tasks

Run time consists of combining
computation and P-Thread overhead time

Small jobs can take longer using P-Threads
due to (comparatively) large amount of time
for thread creation

hread creation occurs on startup, thread
termination occurs at shutdown
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Thread Pool Implementations
“True Pool”

Main Broadcast

Signal

1 mutex coordinates/synchronizes everyone
* “Thundering herd” for mutex control

» Last worker to finish signals Main v



Thread Pool Implementations
“Chain”

Signal
“Get to Work™

Signal
Main “Wake Up”

Signal
“All Done”

Signal “I'm Done”
—— >

 EXxplicit ordering of worker threads
« Many mutexes, 1 for each worker

 Sequentiality explicit 12



Thread Pool Implementations
“Dictatorship™

Main

Many mutexes, 1 for each worker thread
Main sends signals sequentially

Each worker thread signals Main
Workers truly independent
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Thread Pool Implementations
“Corporate” or “Tree”

Main ‘

» Threads tell their subordinates to get to work
 Subordinates inform their bosses that they're done
» “Parallelization” of wake up procedure
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Threads And Core Affinity
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 \Which core does Main run on? Which do
my threads run on?

 Process-to-processor and thread-to-core
mappings greatly affect performance

» “Task mapping problem” heavily researched
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Parallel Performance

rocessor || Woiisie
* All tests conducted on MCS's p \---='\

&

PETSC machine (see schematic) e e
- What's the Bottleneck? L

« Compute bound: program execution time |
determined by speed at which floating 1
operations can be retired e

« Memory bound: program execution time determined by speed at
which cores can obtain data from memory
 |mportant guestions to ask:
« Can we double sequential performance by using 2 threads?
« Can we quadruple sequential performance by using 4 threads?
« Can we octuple sequential performance by using 8 threads?

17



Sequential (Uni-core)
Performance Hardware Limited

e Argonne “PETSC” machine

« 32KB L1 Data & Instruction
e 6144KB L2 Unified

« Working Set oo vestornem

« Amount of physical memory
needed by program
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Vector Dot Product Results
Vector of Size 100,000 Elements

« Sequential

» Runs made using different cores

* As expected, the particular core utilized did not
make a difference

 Results ranged from 1868 to 1983 Mflops/sec
with 1960 Mflops/sec as the median

« Thread Creation/Destruction (2 Threads)
 Results varied widely between 860 to 1300

Mflops/sec

» Indicative of current inability to control where
threads are placed
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Thread Pool VVector Dot Product Results
Vector of Size 100,000 Elements

Both Threads Share Same L2 Both Threads Share Same Processor Both Threads On Different Processors
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Vector Norm Results
Vector of Size 1,000,000 Elements

« Sequential
« Median of 850 Mflops/sec

» Working set overflow of L2 means core has to
wait for data to arrive from DRAM

» Thread Creation/Destruction (2 Threads)
« Comparable performance to sequential
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Thread Pool VVector Norm Results
Vector of Size 1,000,000 Elements

Both Threads Share Same L2
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Matrix-Vector Multiplication
SNES ex19, dmmg_nlevels =6

« Sequential implementation sees 585
Mflops/sec performance

4 Threads All On Different L2s
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