P-Threads and Shared Memory
Programming in PETSc

Kerry Stevens
APAM Research Conference
February 3, 2012

Software Needs To Utilize Resources

« Most HPC systems consist of many, many, many
nodes networked together in a suitable topology

« A node consists (most often) of multiple processors
(sockets) that all have multiple cores

 Utilizing only 1 MPI process per node utilizes only
1 core of 1 processor

« P-Threads/OpenMP designed for shared
memory parallel programming, _ =1 ¥ H;
coordinating work intra-node P A"\ 1

.-,r_ .

Your basic supercomputer

Your basic desktop 2

Communication Model
» P-Threads provides 2 routines to inform

walting threads that the state of some shared
data structure has changed
@[WAKE UP }
EVERYONE!
pthread cond_broadcast awakens all the threads
* initiates a 'thundering herd' all contending for the lock j:
O r’@—
e«
- o O % .
pthread_cond_signal awakens only 1 thread waiting

» Can specify which thread is to be awoken by using
a different condition variable for each thread

... 277 ...

pthread _cond_wait causes the thread to unlock
the held mutex and sleep AUTOMICALLY

The Track Race Analogy

» Guy with the gun — the 'main’ thread
» Runners — the posix threads

* The Event
 All runners line up and get into position
» The guy with the gun fires it off
* Runners perform their task: run

« How can the above procedure be accomplished in
software?

The Track Race Analogy Continued ...

« Common track race events include the 100m,
200m, 400m, and 800m

» Track race events in software we term thread
kernels and include vector dot product, matrix-vector
multiply, etc.

« Just as the 100m takes less time to complete
than the 800m, different thread kernels take
different amounts of time to complete

The Firing of the Starting Gun

* |n real life the Starter fires the gun, the
runners all hear it simultaneously, and

everyone starts running
» The Starter firing the gun analogous to the

'main’ thread Issuing a
pthread cond_broadcast instruction

Implicit Synchronization
The Starter

« Must ensure all the runners are lined up and
In position et

o

» Must ensure all the runners have finished
the race before commencing to set up a new
race L

» Must collect race results (sometimes)

Implicit Synchronization

The Runners

* In real life, unless running a relay, runners
are completely independent of one another

 |n software, a baton (mutex) enters

» Depending on the implementation, threads may
solely coordinate with the 'main' thread or could
coordinate with
multiple other threads

* The need for runner
synchronization makes
thread pool use much
less appealing

Why can't all runners (threads)

start simultaneously?

 Assoclated with the pthread _cond_walt() IS
a condition variable AND a mutex

« Any way that wake up & run can truly be
simultaneous, not sequential?

« NO! Unlock and wait needs to be atomic

Thread Pool & Use

e Collection of threads

 Used often In producer/consumer model

e Producer: add task to some shared data
structure

e Consumer: remove task from shared data
structure and complete task

 Lock must protect the shared data structure

7 “——Add

/1{emove Queue of Tasks Producer Thread
10

Consumer Thread

Thread Pool Implementation in PETSc

Thread pools designed for programs
comprised of many short tasks

Run time consists of combining
computation and P-Thread overhead time

Small jobs can take longer using P-Threads
due to (comparatively) large amount of time
for thread creation

hread creation occurs on startup, thread
termination occurs at shutdown

11

Thread Pool Implementations
“True Pool”

Main Broadcast

Signal

1 mutex coordinates/synchronizes everyone
* “Thundering herd” for mutex control

» Last worker to finish signals Main v

Thread Pool Implementations
“Chain”

Signal
“Get to Work™

Signal
Main “Wake Up”

Signal
“All Done”

Signal “I'm Done”
—— >

 EXxplicit ordering of worker threads
« Many mutexes, 1 for each worker

 Sequentiality explicit 12

Thread Pool Implementations
“Dictatorship™

Main

Many mutexes, 1 for each worker thread
Main sends signals sequentially

Each worker thread signals Main
Workers truly independent

14

Thread Pool Implementations
“Corporate” or “Tree”

Main ‘

» Threads tell their subordinates to get to work
 Subordinates inform their bosses that they're done
» “Parallelization” of wake up procedure

15

Threads And Core Affinity

Shanghal Shanghal Nefglem-EP Nenalem-EP

SAEA EAR AGAR AAAS

Shated L3 Cache (onncusie) Shared L3 Cache rorinclusive) Shared L3 Cache nclusie) Shared L3 Cache rcluse)

+—'—a+—'—l&—'_$

Hr e P +— e
;3 : tH T

{
1] (0] 9] " n

AMD Intel

 \Which core does Main run on? Which do
my threads run on?

 Process-to-processor and thread-to-core
mappings greatly affect performance

» “Task mapping problem” heavily researched

16

Parallel Performance

rocessor || Woiisie
* All tests conducted on MCS's p \---='\

&

PETSC machine (see schematic) e e
- What's the Bottleneck? L

« Compute bound: program execution time |
determined by speed at which floating 1
operations can be retired e

« Memory bound: program execution time determined by speed at
which cores can obtain data from memory
 |mportant guestions to ask:
« Can we double sequential performance by using 2 threads?
« Can we quadruple sequential performance by using 4 threads?
« Can we octuple sequential performance by using 8 threads?

17

Sequential (Uni-core)
Performance Hardware Limited

e Argonne “PETSC” machine

« 32KB L1 Data & Instruction
e 6144KB L2 Unified

« Working Set oo vestornem

« Amount of physical memory
needed by program

N
o

[os]
Q

)
o

1
o

Performance (Mflops/sec)
N
Q

o2} o
Q @]

e rap

0 1] p— 1 ~
o] 500000 1e+06 1.5e+06 2e+06 2.5e+06 3e+06

Number of Elements of Vector

Vector Dot Product Results
Vector of Size 100,000 Elements

« Sequential

» Runs made using different cores

* As expected, the particular core utilized did not
make a difference

 Results ranged from 1868 to 1983 Mflops/sec
with 1960 Mflops/sec as the median

« Thread Creation/Destruction (2 Threads)
 Results varied widely between 860 to 1300

Mflops/sec

» Indicative of current inability to control where
threads are placed

19

Thread Pool VVector Dot Product Results
Vector of Size 100,000 Elements

Both Threads Share Same L2 Both Threads Share Same Processor Both Threads On Different Processors

REETNHEEN]

Performance (Mflops/sge)
Performance (Mflops/sge)

True Pool Main Chain True Pool Main Chain True Pool Main Chain

Vector Norm Results
Vector of Size 1,000,000 Elements

« Sequential
« Median of 850 Mflops/sec

» Working set overflow of L2 means core has to
wait for data to arrive from DRAM

» Thread Creation/Destruction (2 Threads)
« Comparable performance to sequential

21

Thread Pool VVector Norm Results
Vector of Size 1,000,000 Elements

Both Threads Share Same L2

1600 ! Cole D —

Core 6
Core 1 —
—1400
%1200
E'IODD
g 800
@
E 600
E
& 400
F
200
o] B
True Pool ain Chain Tree
Both Threads Share Same L2
250 T T
Core 0 w—
Core 6
Core 1 —
200
=
Rzl
2150
=
=)
2100
g
]
o
50
o - pE——

Thread 0, Core 0; Thread 1, Core 4

Both Threads Share Same Processor

;
1600 EOL:g —
Core 1 w—
—1400
g
21200
[=8
=.
£1000
§ 800
]
£ 600
5
& 400
&£
200
o . .
True Pool Main Chain Tree
Both Threads Share Same Processor
250 T Core 0 —
Core 6
Core 1 —
200
8
&
2150
kS
=
2100
2
]
(==
50
o l H - . [™

Thread 0, Core 0; Thread 1, Core 2

1600
1400
1200

® o
o O
c o

600
400

Performance (Mflops

N
(=]
(=]

o

a = N
o @ =]
[=] Q Q

Range (Mflops/sec)

o
(=}

Thread 0, Core O; Thread 1, Core 1

Both Threads On Different Processors

True Pool

Cole 0

JIlif

Both Threads OI‘I Different Processors

Cofe 0 m—

Cors 4
I | Core 2 —

True Pool Main Gh:un Tree

Matrix-Vector Multiplication
SNES ex19, dmmg_nlevels =6

« Sequential implementation sees 585
Mflops/sec performance

4 Threads All On Different L2s

e (Milopsisec),

@ o a oO
Performance (Mflopg(sec) ,
g ¢ a9 g g o a

Performance

References

« Documentation: http://www.mcs.anl.gov/petsc/docs
« PETSc Users manual

« Manual pages

« Many hyperlinked examples

* FAQ, Troubleshooting info, installation info, etc.

e Publications: http://www.mcs.anl.qov/petsc/publications

 Research and publications that make use PETSc
* Programming with POSIX Threads, by Butenhof

24

