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Fission and fusion provide carbon-neutral energy

 However, the price we have paid so far for fission is
high.

* Part of the high cost is from nuclear accidents.

e Severe nuclear accidents may eventually lead to
nuclear core meltdown.

 Understanding the reactor core failure via simulation
(and not via reality ©) is critical to enhance the safety
of Generation IV reactors.




NPHASE-CMFD Solver

Computational Multiphase Fluid Dynamics solver
Unstructured grids with arbitrary element types

Capable of modeling an arbitrary number of fields (fluid
components and/or phases)

Has built-in and user defined mechanistic modeling,
integrated with numerics

Characterized by improved robustness and numerical
convergence for two-phase flows

Can be used to model gas/liquid interfaces using level set
method

Uses state-of-the-art multiphase models which have been
extensively validated




Where We Need Improved Solver?

For CFD-based simulations, the linear solver is often the
bottleneck for scaling to large number of processors for

more detailed resolution.

. Invert an implicit operator (e.g., ADI)
. Solve for a Newton update with the Jacobian (delta form)

. Apply sophisticated physics-based preconditoner, i.e. using a lower order or
coarser discretization as the preconditioner

. Solve the primal and dual system for a control or inverse problem

Reasons for performance degradation

Linear solver time significantly increases with mesh refinement path as work per
iteration grows superlinearly and convergence tends to degrade

The purpose of the current work is to efficiently solve
the Newton system, A&x" =b", where &" = {u' V', w', p',a"}



Current System

* RANS simulations of turbulent flow inside large
computational domains at macro-scale.

 We write the nonlinear steady state conservation law system as
F(x)=0

* After using pseudo-timestepping, we obtain Newton system, 4&" = 4"
A is the Jacobian, A is the residual, ox”"is the Newton update.

 After solving for ox", we set x""' = x" —wdx" , where
x" =WV, w,p',a'}




Structure of Newton System
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Solution Approach

* Use Preconditioned Krylov iterative method...

1. Krylov iterative method is robust if workspace can be allowed for the vectors
2. Krylov methods have kernel as a sparse matrix-vector multiply that scales well

3. Krylov iterative method can be combined with various preconditioners from
“brute force” algebraic to “physics-based”: ilu, jacobi, sor, domain decomposition,
geometric multigrid, algebraic multigrid, physics-based preconditioner, and user designed

4. For difficult problems like multiphase fluid simulation, it is essential to
combine Krylov method with powerful preconditioner to accelerate the
reduction of low frequency error.

5. An unstructured mesh forces us to use an Algebraic Multigrid Preconditioner

6. Both the parallel implementation of Krylov iterative method and
preconditioning method are freely available from PETSc and Hypre



PETSc and Hypre are part of the U. S. DOE TOPS* project

Mission: enable scientists and engineers to take full
advantage of petascale hardware by overcoming the
scalability bottlenecks of traditional solvers
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* TOPS (2001-2011) has been succeeded by FASTMath (2011-2016) in SciDAC-3.



TOPS software has taken science applications to the
architectural leading edge

® TOPS software is at the
heart of three Gordon Bell

“Special” Prizes 1999
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Scope for scalable solver software

. . 11 7
* Five types of generalized "solvers
— Time integrators f(-X'f., x, t, p) = O Optimizer —> Sens. Analyzer

(w/ sens. anal.)

— Nonlinear solvers F(x, p) = ()

(w/ sens. anal.) Time

integrator

— Constrained optimizers l

n%lin o(x,u)st. F(x,u)=0,u=0
— Linear solvers Ax = b i

— Eigensolvers Ax = ABx solver
e Software integration

Eigensolver

| Indicates

dependence

* Performance optimization




PETSc user code/library interactions

http://www.mcs.anl.gov/petsc

Main Routine

Timestepping Solvers (TS)

Nonlinear Solvers (SNES)

Linear Solvers (KSP)

Preconditioners (PC)

Application Function Jacobian P .
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Initialization Evaluation Evaluation P o




Hypre preconditioner interfaces

Linear System Interfaces
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Krylov bases for sparse systems

® F.g., conjugate gradients (CG) for symmetric, positive
definite systems, and generalized minimal residual
(GMRES) for nonsymmetry or indefiniteness

® Krylov iteration is an algebraic projection method for
converting a high-dimensional linear system into a
lower-dimensional linear system.
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Convergence estimates

Symmetric case: Azx = f.

Theorem. If A has at most s distinct eigenvalues, CG converges
in at most s steps.

Theorem. Let ¢, = x, — =™, where z* is the exact solution,

and let K = Amax(A)/Amin(A). Then

k
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Nonsymmetric case: Ax = f.

Theorem. If A has at most s distinct eigenvalues, GMRES
converges in at most s steps.

Theorem. Let rp, = f — Axy, Cg = )\maX(ATA), and cp =
Amin(3(AT + A)). Then
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Krylov solver software

 There is a large variety of Krylov solvers

— customized to mathematical properties like symmetry or definiteness

— customized to architectural properties like synchronization cost,
memory capacity, communication to computation capabilities

* All Krylov solvers users have found practical are
selectable at runtime in libraries like PETSc in TOPS
— users may register their own Krylov solvers if their favorite variant is

missing

* Preconditioning is essential for most applications (see
previous slide) to shrink the spectrum into a relatively
small number of clumps, each of which requires one
Krylov iteration

— Hypre (called by PETSc) has a number of multilevel preconditioners



Generalization: geometric multigrid

 Geometric multigrid has done well on structured, homogeneous,
Isotropic problems

e Algebraic multigrid (AMG) has done well with unstructured,

inhomogeneous, and anisotropic problems and adaptive AMG (aAMG) has
done well with indefinite problems

 More work is needed to obtain O(N) in highly symmetric, multicomponent
problems and for high-order alternating sign discretizations

Error modes (think
Fourier modes)

AMG Framework

error easily Choose coarse grids, transfer
damped by : algebraically operators, and smoothers to
pointwise | smooth error eliminate these “bad”

components within a smaller

relaxation \ _
; dimensional space, and recur




Sparse iterative solvers are scaling:

algebraic multigrid (AMG) on BG/L (hypre)

e Algebraic multigrid a key and very general algorithmic technology

— Discrete operator defined for finest grid by the application, itself, and for many
recursively derived levels with successively fewer degrees of freedom, for solver

purposes
— Unlike geometric multigrid, AMG not restricted to problems with “natural”
coarsenings derived from grid alone
 Optimality (cost per cycle) intimately tied to the ability to coarsen
aggressively

* Convergence scalability (number of cycles) and parallel efficiency also
sensitive to rate of coarsening

While much research and development
remains, multigrid is practical at petascale
concurrency (hundreds of thousands of

processors)

Figure shows weak scaling result for AMG
out to 120K processors, with one 25x25x25
block per processor (up to 1.875B dofs)

clo U. M. Yang, LLNL (TOPS)
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PETSc and Hypre are extensible toolkits

* Does (GMRES from PETSc)+(AMG from Hypre) solve

our problem?
— No, because AMG is not yet perfected for multicomponent problems

 What to do? PETSc allows the user to define split
preconditioners

 This does the trick

Each component is scalable

Ax = b

N PETSc GMRES

User defined splitter

Hypre | Hypre | .... Hypre




Split preconditioner

The most basic idea in iterative methods for Ax = b is
x<—x+B7'(b-Ax)

Evaluate residual accurately, but solve approximately, B~

where is an approximate inverse to A4

A sequence of complementary solves can be used, e.g., with
first B, and then B, one has

x<—x+[B'+B;' —B;'AB'](b — Ax)

B, can represent dense diagonal coupling blocks and 5,
sparse scalar solves for each component

Scale recurrence, e.g., withB;' = R" (RAR") 'R, where
R is a restriction operator taking fine to coarse
representations, leads to multilevel methods



More details on the splitter

Consider n-phase fluids, the parallel block matrix will have

the following index set for 1 Finite Volume cell:
" ={1,2,3,4,5...5n-4,5n-3,5n-2,5n-1,5n}

We define the following splitting strategies:

Full Split

o ={{1},{2},{3},...45n =3}, {5n -2}, {5n -1} ,{5n} }
Partial Split-1

ox" ={{1,2,3,4},{5}...{5n-4,5n-3,5n-2,5n -1}, {5n} }
Partial Split-2

ox" ={{1},{2,3,4},{5}...{5n -4} ,{5n-3,5n - 2,5n -1}, {5n} }
Phase split

ox" ={{,23,4,5}...45n-4,5n-3,5n-2,5n-1,5n} }




Solver Verification

Nonlinear Residual history (553 iters) :
5000 cell, 2—-compont flow, linear-rtol=e-6
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Solver Scaling

Single-phase flow in the reactor rod geometry with full-splitting and partial-
splitting-2 strategies.

# of Mesh Cells NP Full-splitting Partial-splitting 2
Iter. Count Wall Time Iter. Count Wall Time
1.5e6 16 6 1.81e+01 6 1.86e+01
3eb 32 6 2.03e+01 6 2.25e+01
6e6 64 6 2.67e+01 6 2.59e+01
9eb 96 6 3.16e+01 6 3.02e+01
12e6 128 6 3.59e+01 6 3.23e+01
18e6 192 6 5.25e+01 6 4.04e+01
60.0
50.0 =&—Full Split Y
' == Partial-Split 2
40.0 /.él
30.0
20.0
10.0
0.0 " NP

16

32 64 96 128 192




Solver Scaling

Two-phase flow in the reactor rod geometry with full-splitting and partial-
splitting-2 strategies.

# of Mesh Cells NP Full-splitting Partial-splitting 2

Iter. Count Wall Time Iter. Count Wall Time

3.75e5 16 20 1.81e+01 20 2.65e+01
7.5e5 32 20 2.40e+01 20 2.80e+01
1.5e6 64 20 3.09e+01 20 3.41e+01
2.25e6 96 20 3.82e+01 20 3.88e+01
3eb 128 20 4.30e+01 20 4.32e+01
4.5e6 192 20 5.47e+01 20 5.02e+01

60.0
o= Full Split _

50.0
== Partial-Split 2

40.0

30.0

20.0 =
10.0

0,0 T T T T 1 N P
16 32 64 96 128 192




Summary and Future Work

Solver scalability and robustness is critical for large
scale multiphase fluid simulation.

1. To identify a bottleneck, profiling the code is important

2. Ifitis on linear solver, then a scalable implementation (e.g., Krylov) is
important; in this work, we used GMRES

3. Very often, the Krylov solver itself needs a preconditioner to cluster the
matrix spectrum for good convergence

4. Choosing a scalable preconditioner is also critical. For more options, see:

At

Terascale Optimal PDE Simulations

5. Applications might need custom preconditioning tuning, too

Future work

Improving the scalability, and accelerate the nonlinear convergence




