

1

3D Magnetic Structure of Plasmas with an Adjustable Wall Geometry

Jeffrey P. Levesque

with the HBT-EP Group:

S. Angelini, J. Bialek, P.J. Byrne, B.A. DeBono, P. Hughes, B. Li, M.E. Mauel, G.A. Navratil, Q. Peng, N. Rath, D. Rhodes, D. Shiraki, and C. Stoafer

COLUMBIA UNIVERSITY

APAM Research Conference February 10, 2012

- Introduction
 - 3D fields in tokamaks
 - Why are conducting walls important?
 - Stabilization of the kink instability
 - Motivation for studying the influence of conducting wall geometry
- HBT-EP capabilities
 - Magnetic sensors for measuring mode activity
 - Adjustable wall structure
 - Mode analysis without a pre-defined basis
- Results of changing the HBT-EP wall geometry
- Summary

- Introduction
 - 3D fields in tokamaks
 - Why are conducting walls important?
 - Stabilization of the kink instability
 - Motivation for studying the influence of conducting wall geometry
- HBT-EP capabilities
 - Magnetic sensors for measuring mode activity
 - Adjustable wall structure
 - Mode analysis without a pre-defined basis
- Results of changing the HBT-EP wall geometry
- Summary

HBT-EP's mission: Measure and control 3D edge magnetic fields with high detail and accuracy

- Tokamaks are nominally axisymmetric, but small 3D fields arise
 in practice
 - Finite magnetic coils
 - Coil misalignments
 - Plasma instabilities
- Understanding 3D field effects is important for predicting and optimizing tokamak performance
 - Edge Localized Mode (ELM) mitigation
 - Error field correction
 - Resistive Wall Mode (RWM) feedback

Nearby conducting walls are important for kink mode stability

Nearby conducting walls are important for kink mode stability

Nearby conducting walls are important for kink mode stability

 Toroidal and poloidal wall asymmetries exist due to ports, insulating breaks, and varying plasma geometries

- Modular walls may distort kink mode structure, and lead to non-rigid ("multimode") behavior
 - Discrete conducting structures will couple multiple stable or unstable modes through eddy currents. This can lead to loss of feedback control or complicate the plasma response.

- Introduction
 - 3D fields in tokamaks
 - Why are conducting walls important?
 - Stabilization of the kink instability
 - Motivation for studying the influence of conducting wall geometry
- HBT-EP capabilities
 - Magnetic sensors for measuring mode activity
 - Adjustable wall structure
 - Mode analysis without a pre-defined basis
- Results of changing the HBT-EP wall geometry
- Summary

Major Radius R ₀ :	92 cm
Minor Radius:	15 cm
Plasma Current I _p :	~15 kA

Toroidal Field B _T :	0.33 T
Pulse Length:	5 - 10 ms
Electron temperature:	≤ 150 eV

Adjustable walls and magnetic diagnostics in HBT-EP allow high-resolution detection of plasma modes

• 236 in-vessel magnetic sensors, 120 active feedback coils

Magnetic pickup coils are used to analyze 3D mode behavior

250 200 E Total (G) Measure $\partial_t B_{r,\theta}$ using pickup • 150 coils and integrate to get $B_{r,\theta}$ 100 E ഫ് Fully integrated B_{θ} 50 Ē (2 8 0 3 6 7 Time (ms) 20 10 Subtract smoothed signal ٠ δB (G) for individual sensors -10 B_{θ} Fluctuations -202.5 1.5 2.0 3.0 3.5

Time (ms)

• Measure $\partial_t B_{r,\theta}$ using pickup coils and integrate to get $B_{r,\theta}$

- Subtract smoothed signal for individual sensors
- Contour plot sensor groups
 - Use appropriate window for analysis

HBT-EP plasmas have a variety of coherent 3D mode activity

Example shot with edge "safety factor" ~ 2.7 has clear m/n=3/1 and 6/2 modes

The m/n=6/2 kink can evolve independently of the 3/1 mode, implying the need for multimode feedback control

0.00 4.0

4.2

4.4 Time (ms)

4.6

4.8

5.0

4.0

4.2

4.4 4.6

Time (ms)

4.8

5.0

Conducting wall asymmetries may change coupling between multiple kink modes

- Different eddy-current patterns may couple stable/unstable modes
- A "non-rigid" kink structure means that the shape of instabilities could change as plasma pressure increases

Conducting wall asymmetries may change coupling between multiple kink modes

- Different eddy-current patterns may couple stable/unstable modes
- A "non-rigid" kink structure means that the shape of instabilities could change as plasma pressure increases
- VALEN code can simulate behavior with different wall configurations to maximize coupling of specific modes through eddy-currents

- Introduction
 - 3D fields in tokamaks
 - Why are conducting walls important?
 - Stabilization of the kink instability
 - Motivation for studying the influence of conducting wall geometry
- HBT-EP capabilities
 - Magnetic sensors for measuring mode activity
 - Adjustable wall structure
 - Mode analysis without a pre-defined basis
- Results of changing the HBT-EP wall geometry
- Summary

Multimode spectrum is enhanced by changing the wall geometry

- With several wall sections retracted, power in the second mode pair (modes 3 and 4) is more significant than when shells are fully inserted
- Results strongly depend on equilibrium
 - Need more shots for statistics

Spatial mode structure is similar for the different wall geometries

Dominant m-number transitions have been seen for shells fully inserted and asymmetrically retracted

Transition from m=4 to m=3 mode occurs later for the toroidally asymmetric case

- Shell geometry appears to affect mode transitions
- More shots are needed to study statistical significance
 - Plasma equilibria were slightly different

- Introduction
 - 3D fields in tokamaks
 - Why are conducting walls important?
 - Stabilization of the kink instability
 - Motivation for studying the influence of conducting wall geometry
- HBT-EP capabilities
 - Magnetic sensors for measuring mode activity
 - Adjustable wall structure
 - Mode analysis without a pre-defined basis
- Results of changing the HBT-EP wall geometry
- Summary

- Small 3D magnetic fields significantly affect tokamak performance
- HBT-EP is able to measure 3D edge magnetic fields in high detail
 - Multimode interactions have been observed
- Conducting wall structures around plasmas can influence the presence of various 3D field components
 - More run-time with wall asymmetries in HBT-EP will provide insight into the importance of wall geometry