Probing Interface Reactions by STM: Molecular Dynamics on the Angstrom Scale

Zhisheng Li Prof. Richard Osgood Laboratory for Light-Surface Interactions, Columbia University

Outline

- Motivation: Why do we study interface?
- Adsorption Geometry of Large Molecules on TiO₂(110)
- Tip-Induced Reaction
- Making Oriented Nanocrystal TiO₂

Motivation: Why do we study the interface?

- Role of molecular conformation
- Molecular "fit" on surface
- Undesired (or desired) molecular reactions adsorbates
- Implications for transfer efficiency

Surface— adsorbate interface plays very important role!

Research tool: Scanning Tunneling Microscope (STM)

STM of clean TiO₂(110)

20 x 20 nm, 0.1 nA

20 x 20 nm, 1.0 nA

- Rutile(110) surface:
 - Most thoroughly studied surface
 - Relatively easy to prepare

Bridging oxygen vacancies: 18 %

Outline

- Motivation: Why do we study interface?
- Adsorption Geometry of Large Molecules on TiO₂(110)
- Tip-Induced Reaction
- Making Oriented Nanocrystal TiO₂

STM of 1ML Adsorbed Organic Molecules

Anthracene

Van der Waals: 1.16 nm

Sample at 300K

30 x 30 nm, 1.4 nA

- Anthracene molecules aligned along Ti⁽⁵⁾ rows
- Form quasi-periodic pattern with 1.2 nm period – Mol. length
- Electrostatic interaction (repulsive along and attractive across rows) responsible for surface pattern – due to surface puckering

STM of adsorbed organic molecules

Anthracene (0.17 ML)

30 x 30 nm, 50 pA

DFT Calculations - Adsorption Geometry

Anthracene - 135 K

Compare with NEXAFS study S. Reiss et al., *J.Chem.Phys.* (2002) 116, 7704

From TPD experiments E_{ads} = 0.9 eV

Calculation by N. Aaron Deskins – Worcester Polytechnic Institute

STM of adsorbed organic molecules

2-Chloroanthracene (1ML)

CI

- **2-Chloroanthracene** molecules also aligned along Ti⁽⁵⁾ rows
- As with anthracene, electrostatic interaction responsible for surface pattern
- Chlorine causes permanent tilting
- 20 x 20 nm, 0.1 nA

Outline

- Motivation: Why do we study interface?
- Adsorption Geometry of Large Molecules on TiO₂(110)
- Tip-Induced Reaction
- Making Oriented Nanocrystal TiO₂

Examine electron transfer reactions via tip-induced charge injection, i.e. from STM tip to adsorbed molecule

- Controlled energy of the electrons
- Localized to site and molecular state

Cryogenic temperatures

2-Chloroanthracene

135 K

- Dissociation event detected!
- Adatom X sits on Ti⁽⁵⁾ rows

10 x 10 nm, 20 pA

135 K

Observations on Fragment Dynamics

- Desorption of the molecule also occurs ~ 50%
- Reactions
 - Low cross-section
 - Cl remains bonded in place image forces
 - Anthracenyl ejected: surface, tip, vacuum. Estimated anthracenyl adsorption energy ~ estimated kinetic energy.

Outline

- Motivation: Why do we study interface?
- Adsorption Geometry of Large Molecules on TiO₂(110)
- Tip-Induced Reaction
- Making Oriented Nanocrystal TiO₂

Nanoparticles

In Situ Growth STM Nanocrystallography Reactivity

Surface-Alloy Growth

- Ratio Ti 387eV and Au 69eV Auger signals after annealing
- 900K forms surface alloy

Overview of nano TiO_x crystals

200nm x 200nm

Ti islands on Au (111) substrate

D:IOmicron NanoTechnologyIMATRIXIdefaultiResultsI27-Mar-2012IZ RetraceDown Mon Apr 02 14.04.57 2012 [34-1] STM_Spe

200nm x 200nm

TiO_x crystals on Au (111) substrate

Representative Crystals

D:IOmicron NanoTechnologyIMATRIXIdefaultiResults\08-Mar-2012\Z TraceUp Mon Mar 26 15:56:39 2012 [212-1]

D:\Omicron NanoTechnology\MATRIX\default\Results\08-Mar-2012\Z TraceUp Mon Mar 26 17.24.00 2012 [220-1]

30micron NanoTechnologyMATR00defaultResults108-Mar-2012/Z TraceUp Tue Mar 13 14:29:32 2012 [47-1] STM_Basic STM.zoom_105x9

Atom spacing is 0.31nm compared to Au substrate atom spacing 0.29nm

Strong interaction with the substrate!

Unit cell of nano TiOx crystals

D:00micron NanoTechnologyMATR00defaultResults127-Mar-2012/Z TraceDown Tue Apr 03 17:57:53 2012 [62-1] STM_Spectroscopy STM.zoom_

Au adtoms sitting on surface?

a = 0.5 nm b = 1.2 nm

Conclusions

- Molecular adsorbed phases and motion on TiO₂ (110) surfaces.
- 2-Chloroanthracene single-molecule dissociation events by current pulse from STM tip
 - Dissociation energy of +3.1 \pm 0.3 eV.
 - Dissociation mechanism
- UHV nanocrystals synthesized for dynamics.

Acknowledgements

✓ Thanks to Prof. Osgood for the guidance in research

✓ Thanks to Denis and Yang Lou, a great pleasure working with you.

✓ Thanks to Stan, Figo, Vincent for all supports and useful discussions.

7 x 7 nm, 20 pA

dl/dV, a.u.

Dissociation Mechanism: DEA

Gas-Phase Dissociation by Electron Attachment

Figure 2. Total anion current, as a function of the incident electron energy, in chlorobenzene, benzyl chloride, (2-chloroethyl)benzene, and *tert*-butyl chloride.

Modelli A., Venuti M., J.Chem.Phys.A (2001) 105, 5836

- Dissociation is caused by electron attachment
- Because of surface proximity the lifetime on π* orbital is very short
- Dissociation caused by electrons tunneling directly into C-Cl σ* orbital