The dawn of chorus in the cacophony: an update on its manifold effects, open problems, and opportunities.

Jacob Bortnik1,2, PhD
1Department of Atmospheric & Oceanic Sciences, University of California at Los Angeles, CA
2Visiting Scholar, Center for Solar-Terrestrial Physics New Jersey Institute of Technology, Newark, NJ
Outline

• Introduction to chorus waves and wave-particle interactions
 1. Low energy electrons (E<10 keV), e.g., diffuse aurora
 2. Medium energy electrons (10<E<100’s keV), e.g., pulsating aurora
 3. High energy/relativistic electrons (~MeV), e.g., radiation belts

• En route: plasmaspheric hiss, real-time global chorus mapping, field line mapping, nonlinear interactions, and more!
Waves from space!

The sound of the ‘dawn chorus’ may be likened to that of a rookery heard from a distance. It consists of a multitude of rising whistles against a background of a warbling sound which may be mixed with varying amounts of toneless hissing. It has a pronounced daily variation of intensity with a maximum around 6 a.m., and its occurrence correlates strongly with magnetic storms; on undisturbed nights it usually does not appear at all, while on the night of a storm it may be heard continuously for five or six hours of the early morning.

Chorus characteristics

- Found outside plasmasphere on dawn side
- Due to unstable, drifting plasmasheet electrons
- Multi-scale structure in space and time

Li et al. [2012], Fig. 1
Chorus interaction with energetic electrons: geometry

- Wave (chorus) propagating away from equator
- Particle traveling through wave field
- Non-adiabatic changes

\[m \frac{dv}{dt} = q \left(E_w + v \times [B_0 + B_w] \right) \]
The unperturbed (adiabatic) motion

- Particle gyro-motion averaged out
- 1st adiabatic invariant & energy conserved
- B-field inhomogeneity leads to bounce-motion

\[
m \frac{d\mathbf{v}}{dt} = q(\mathbf{v} \times \mathbf{B}_0)
\]

\[
\frac{dv_{||}}{dt} = -\frac{v_{\perp}^2}{2B} \frac{\partial B}{\partial z}
\]

\[
\frac{dv_{\perp}}{dt} = \frac{v_{\perp}v_{||}}{2B} \frac{\partial B}{\partial z}
\]
Perturbed motion by field aligned waves

- Non-adiabatic changes occur when η is stationary, i.e., $d\eta/dt \sim 0$ (resonance)

\[
\begin{align*}
\frac{dv_\parallel}{dt} &= \left(\frac{qB_w}{m}\right) v_\perp \sin \eta - \frac{v_\perp^2}{2B} \frac{\partial B}{\partial z} \\
\frac{dv_\perp}{dt} &= -\left(\frac{qB_w}{m}\right) \left(v_\parallel + \frac{\omega}{k}\right) v_\perp \sin \eta + \frac{v_\perp v_\parallel}{2B} \frac{\partial B}{\partial z} \\
\frac{d\eta}{dt} &= \Omega - \omega - kv_\parallel
\end{align*}
\]
Collective wave effects

- Particles drift around the earth
- Accumulate scattering effects of:
 - ULF
 - Chorus
 - Hiss (plumes)
 - Magnetosonic
- Characteristic effects of each waves are different and time dependent

Thorne [2010] GRL “frontiers” review
Chorus

- Ray paths
- Wave particle interaction of chorus:
 - Landau damping, $m=0$, ~1 keV
 - Cyclotron resonance, ~10s - 100s keV
 - Interacts with MeV electrons

Bortnik et al. [2007] GRL

Landau, $m=0$

1^{st} cyclo

Anom. cyclo

Bortnik et al. [2007] GRL
1. Diffuse aurora (Low E<10 keV)

Only chorus can account for the resultant distributions observed in space

Open question: what is the feedback effect of the ionospheric conductivity changes?

Thorne et al. [2010] *Nature*
Ni et al. [2013], submitted
Chorus controls diffuse auroral emission brightness
\textsim 1 \text{ keV} \text{ fluxes control chorus distribution}

- Low f: high latitudes on day side
- High f: low latitudes on dawn

Bortnik et al. [2007]
2. Pulsating aurora
(Medium 10<E<100s keV)

• Described in 1963 “auroral atlas”
 – Luminous patches that pulsate with a period of a few to 10’s of seconds
 – Scale, ~10-100 km
 – Precipitating electrons E>10 keV
TH-A, Nar-ASI conjunction 15 Feb 2009

(A) Narsarsuaq all-sky imager

(B) THEMIS-A wave observations (Chorus)

(C) Space-ground correlation
• Map of cross-correlation coefficients

• >90% correlation

• Location roughly stationary

Nishimura et al. [2010], Science, 330 (81)
Validity of multiple magnetic field models

Quiet time (ΔH and $\Delta Z \sim 0$)

Disturbed time ($|\Delta H|$ or $|\Delta Z| > ~50$ nT)

• The T02 magnetic field model (yellow) tends to be closer to the chorus-PA correlation location (error \sim 100 km in the ionosphere).

Magnetic activity dependence
• Quiet time footprint: Closer to IGRF than Tsyganenko
• Disturbed time footprint: Closer to or slightly equatorward of Tsyganenko
Use POES fluxes at 0° and 90° pitch angle.

Source population, 30-100 keV.

\(J_0 / J_{90} \) directly related to \(D_{\alpha\alpha} \) near edge of loss cone \(\rightarrow B_w^2 \)

Li et al. [2013], in press.
Comparisons to directly measured chorus wave amplitudes during rough conjunction events between POES and Van Allen Probes, where each colored bin represents a rough conjunction event.
Evolution of global chorus wave amplitudes inferred from multiple POES satellites, and observed by the two Van Allen Probes

Thorne et al. [2013], submitted
High energy/relativistic electrons (\simMeV)

“There are two distinct, widely separated zones of high-intensity [trapped radiation].”

Explorer 1 launch:
Jan. 31st 1958
Equilibrium 2-zone structure

- The quiet-time, “equilibrium” two-zone structure of the radiation belt results from a balance between:
 - inward radiation diffusion
 - Pitch-angle scattering loss (plasmaspheric hiss)
- Inner zone: $L \sim 1.2-2$, relatively stable
- Outer zone: $L \sim 3-7$, highly dynamic

Lyons & Thorne [1973]
Outer radiation belt exhibits variability, several orders of magnitude, timescale \sim minutes.

Baker et al. [2008]
Predictability of outer belt fluxes

- Similar sized storms can produce net increase (53%), decrease (19%), or no change (28%). “Equally intense post-storm fluxes can be produced out of nearly any pre-existing population”
- Delicate balance between acceleration and loss, both enhanced during storm-time, “like subtraction of two large numbers”.

Reeves et al. [2003]
Electrons accelerated to ultra-relativistic energies during Oct 8-9 2012 storm

Thorne et al. [2013], submitted
Chorus-driven acceleration of electrons, Oct 8-9 2012
Decay of the ultra-relativistic ‘storage ring’ of electrons, Sept 2012

Thorne et al. [2013], GRL
Chorus as the origin of plasmaspheric hiss

Bortnik et al. [2008] Nature, 452(7183)
• Can resonate with ultra-relativistic electrons

• **EQUATOR:**
 - Bimodal near p’pause
 - Field-aligned deeper in

• **OFF - EQ:**
 - oblique

Unique wavenormal distribution
Summary

• Chorus is excited by ~10-100 keV plasmasheet electrons
 – Precipitation: pulsating aurora
 – field line mapping
 – chorus mapping from ground or LEO (POES)
 – Propagation: plasmaspheric hiss

• Landau damping due to ~1 keV electrons
 – Diffuse aurora: ionospheric conductivity modifications

• ‘Parasitic’ interactions with 100’s keV to MeV electrons leads to radiation belt acceleration
Energetic particles undergo three types of periodic motion:
- They gyrate around the magnetic field
- They bounce between the mirror points
- They drift around the Earth

Associated adiabatic invariant

\[
\mu = \frac{p^2}{2mB} \quad J = \int p_{\parallel} ds \quad \Phi = \int Bds
\]
Wave-particle interaction: violation of the invariant/s

1st invariant violation
\[\omega - k_v v_{\parallel} = n \Omega_e/\gamma \]

3rd invariant violation
\[\omega = m \Omega_d \]

The relative motion between the wave and particle Doppler shifts the wave up to the ion cyclotron frequency.

Tsurutani & Lakhina [1997]

Elkington, Hudson & Chan [2003]
- MeV el: internal charging; 0.1-100keV: surface charging; MeV ions: SEU
- ¾ satellite designers said that internal charging is now their most serious problem, 2001 ESA study [Horne, 2001]
- Examples: Intelsat K, Anik E1 & E2, Telstar 401, Galaxy IV
- Costs: ~$200M build, ~$100M launch to GEO, 3%-5%/yr to insure; e.g., in 1998 $1.6B in claims, but $850M in premiums.
"The menagerie of geospace plasma waves"

Shawhan [1985]
A quick recap...

1. Radiation belts consist of trapped electrons that gyrate around field lines (kHz), bounce between hemispheres (Hz), and drift around the Earth (mHz, ~15 mins)

2. Radiation belt structure:
 - Outer belt (L=3-7): very dynamic, unpredictable, dangerous to satellites
 - Slot region (L=2-3): result of scattering by plasmaspheric hiss
 - Inner belt (L=1.2-2): stable

3. Waves play a major role in controlling radiation belt dynamics, by violating adiabatic invariants
Chorus general characteristics

- Sequence of narrowband tones, $df/dt \sim 0.2$-2 kHz/sec
- Rising ($P \sim 77\%$), falling ($P \sim 16\%$), hooks etc. ($P \sim 18\%$)
- Bimodal distribution, $\sim 0.34f_{ce}$ (lower) $\sim 53f_{ce}$ (upper)
- Persistent gap at $\sim 0.5f_{ce}$

2. The origin of plasmaspheric hiss

October 4th, 2008

Bortnik et al. [2009], *Science*, 324 (5928)
When are nonlinear effects important?

“restoring” force

\[
\frac{d^2 \eta}{dt^2} + k \left(\frac{q B_w}{m} \right) v_\perp \sin \eta = \left[\frac{3}{2} + \frac{\Omega - \omega}{2 \Omega \tan^2 \alpha} \right] v \left| \frac{\partial \Omega}{\partial z} \right|
\]

“driving” force

\[
\frac{d^2 \eta}{dt^2} = \omega_t^2 (\sin \eta + S) \approx 0
\]

Conditions for NL:

- Waves are “large” amplitude
- Inhomogeneity is “low”, i.e., near the equator
- Pitch angles are medium-high

Bortnik et al. [2010]
Three representative cases

Bortnik et al. [2008]
Towards diffusion: small A, low λ (5 sec)

- Diffusion coefficients:

$$D_{\alpha\alpha} = \frac{<\Delta\alpha^2>}{2\Delta t}$$
$$D_{EE} = \frac{<\Delta E^2>}{2\Delta t}$$

Inan [1987]; Albert [2010]

48 electrons, 5 sec, 10 bounce periods, 20 res. interactions
Diffusive spreading in α, E
Objective

1. Single-wave/test-particle
 - Waves can be strong
 - Narrowband & coherent
 - Interactions all correlated
 - Microphysics

2. Quasilinear theory
 - Waves are all weak
 - Wideband & incoherent
 - Interactions uncorrelated
 - Global modeling

Reality, somewhere in this region ...
Subpacket structure: a Two-wave model

Tao et al. [2012a] subpacket structure modifies the single-wave scattering picture
Subpacket structure: full spectrum model

Tao et al. [2012b], GRL
Subpacket structure: full spectrum model

Phase bunching ↔ Phase trapping

$H(\alpha_0)$

α_0 (°) Tao et al. [2012b], GRL
Amplitude threshold of QLT

Tao et al. [2012c] (in press)
Quasilinear diffusion coefficients deviate from test-particle results in a systematic way.
Summary

1. Radiation belts are of great current interest
 - Highly dynamic and dangerous to spacecraft
 - Physics are complex and poorly understood

2. Chorus: a critical component of the space environment
 - Origin of plasmaspheric hiss
 - Origin of pulsating aurora
 - Origin of diffuse
 - A key acceleration and loss process for radiation belts

3. Large amplitude chorus raises new questions
 - Is quasilinear theory adequate to model RB dynamics?
 - Are we missing critical effects? (i.e., dropouts, rapid accel.)
 - What is the role of amplitude vs. subpacket structure?

4. Radiation Belt Storm Probes (RBSP): mission to the radiation belts
Backups
1. Plasmaspheric hiss

- Incoherent, electromagnetic, whistler-mode
- Wideband, \(f \sim 0.2 - 2 \text{ kHz} \)
- Confined to plasmasphere, except for high latitude day side; \(L: \sim 1.6 \) to plasmapause
- Wave normal angles generally field-aligned, possibly some oblique
- Slot region in radiation belts

Radiation Belt Storm Probes

1. Discover which processes, singly or in combination, accelerate and transport radiation belt electrons and ions and under what conditions.

2. Understand and quantify the loss of radiation belt electrons and determine the balance between competing acceleration and loss processes.

3. Understand how the radiation belts change in the context of geomagnetic storms.

- NASA Living With a Star
- Launch Aug 15, 2012
- 2 probes, <1500 kg for both
- ~10° inclination, 9 hr orbits
- ~500 km x 30,600 km
Chorus vs ECH correlations

- Modulation of PA controlled by lower-band chorus modulation
- Not correlated to ECH or upper-band chorus
“Steady noise”

“Bursts of noise”

OGO 1 satellite, ~0.3 – 0.5 kHz emissions

Original VLF work

Russell et al. [1969]

Dunckel & Helliwell [1969]
Early Space-based studies

- Emission terminate abruptly at p-pause \(\rightarrow \) plasmaspheric hiss (except high lat day side)
- Amplitude \(\sim 5-50 \) pT
- Sharp lower cutoff, diffuse upper cutoff
- Max \(\sim 500-600 \) Hz
- Constant throughout plasmasphere (?)
- Probably generated by cyclotron instability just within p’pause (?)

OGO 5 pass, April 4th 1968 [Thorne et al., 1973].
Chorus propagation

- Chorus propagates away from equatorial source region
- Generation at 0 to oblique wave normal angles

LeDocq et al. [1998]; Lauben et al. [2002]; Parrot et al. [2002];
Wave-particle interactions

\[\omega + k \| v \| = m \omega_H / \gamma \]
- Landau resonance; \(m=0 \)
- Cyclotron resonance; \(m=\pm 1, \pm 2, \pm 3 \) etc.
- Cause particle to change pitch angle and energy

\[\text{e.g., Kennel and Petschek [1966]; Roberts [1966], and many more!} \]

- **Low latitude \(\sim 0^\circ \)**
 - 10-100 keV electrons lose energy \(\rightarrow \) wave growth
 - Resonant wave absorption \(\rightarrow \) local acceleration of trapped MeV electrons

- **High latitude \(\sim 25^\circ \)**
 - Microburst precipitation \(\sim 1 \) MeV electrons
 - Effective acceleration to higher energies

\[\text{Horne and Thorne [2003]} \]
Plasmaspheric hiss statistical distribution

- Geomagnetic control and local time asymmetry
 - Weak: night, Intense: day
- 2-zone distribution; bandwidth distribution vs. L, exo-spheric/ELF hiss

Meredith et al. [2004]
Source region bounding

(a) Simultaneous chorus measurement by two spacecraft

(b) Chorus measurement by a single spacecraft
Simultaneous observation by two spacecraft

Spacecraft separation: \(~1500\) km

Chorus occasionally occur simultaneously at two spacecraft locations, but many chorus bursts are measure only by one of the spacecraft. PA at the footprints are also not highly correlated.

This partial correlation using simultaneous aurora observations can be used to estimate the coherent chorus size near the equator.
Correlation with pulsating aurora for 7 most intense chorus bursts

Chorus
- D only: a, d
- E only: c
- D and E: b, e, f, g

Pulsating aurora
- D only: a, d
- E only: c
- D and E: b, e, f, g

Chorus at both spacecraft = PA at both footprints
Chorus at single spacecraft = PA at single footprint

The PA patch shape would reflect the w-p interaction size.
Simulated power distributions

- Ray trace thousands of rays, $L=4.8-8$, all angles, power-weighted.
- Agreement with observation:
 - Correct peak power
 - Bandwidth decrease at low L
 - Two zone structure
 - Correct spatial confinement
- Disagreement:
 - Power peak near L_{pp}
 - Too weak (factor $\sim 3-5$)
- Cause of error?
Evolution of discrete chorus emissions into the plasmaspheric hiss continuum

Chorus \(\rightarrow\) hiss:
- Avoids Landau damping
- Propagates into plasmasphere at high latitudes
- Low frequencies
- Range of L-shells
- Range of wave normals

Statistical characteristics reproduced

Bortnik et al. [2009], *JASTP*